
UAV Toolbox
User's Guide

R2021b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

UAV Toolbox User's Guide
© COPYRIGHT 2020–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2020 Online only New for Version 1.0 (R2020b)
March 2021 Online only Revised for Version 1.1 (R2021a)
September 2021 Online only Revised for Version 1.2 (R2021b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

UAV Toolbox Examples
1

Visualize and Playback MAVLink Flight Log . 1-2

Flight Instrument Gauge Visualization for a Drone 1-5

Visualize Custom Flight Log . 1-12

Analyze UAV Autopilot Flight Log Using Flight Log Analyzer 1-27

Tuning Waypoint Follower for Fixed-Wing UAV . 1-37

Approximate High-Fidelity UAV model with UAV Guidance Model block
. 1-41

Motion Planning with RRT for Fixed-Wing UAV . 1-52

Transition from Low to High-Fidelity UAV Models in Three Stages 1-58

UAV Package Delivery . 1-65

Automate Testing for UAV Package Delivery Example 1-77

UAV Scenario Tutorial . 1-87

Simulate IMU Sensor Mounted on UAV . 1-91

Simulate Radar Sensor Mounted On UAV . 1-95

Map Environment For Motion Planning Using UAV Lidar 1-98

Plan Minimum Snap Trajectory for Quadrotor . 1-105

Tune UAV Parameters Using MAVLink Parameter Protocol 1-112

Exchange Data for MAVLink Microservices like Mission Protocol and
Parameter Protocol Using Simulink . 1-117

Onboard Computer Path Planning Interface for PX4 SITL Deployable on
NVIDIA Jetson . 1-131

iii

Contents

3D Simulation – User's Guide
2

Unreal Engine Simulation for Unmanned Aerial Vehicles 2-2
Unreal Engine Simulation Blocks . 2-2
Algorithm Testing and Visualization . 2-3

Unreal Engine Simulation Environment Requirements and Limitations
. 2-5

Software Requirements . 2-5
Minimum Hardware Requirements . 2-5
Limitations . 2-5

How Unreal Engine Simulation for UAVs Works . 2-7
Communication with 3D Simulation Environment 2-7
Block Execution Order . 2-7

Coordinate Systems for Unreal Engine Simulation in UAV Toolbox 2-9
Earth-Fixed (Inertial) Coordinate System . 2-9
Body (Non-Inertial) Coordinate System . 2-9
Unreal Engine World Coordinate System . 2-11

Choose a Sensor for Unreal Engine Simulation . 2-13

Simulate Simple Flight Scenario and Sensor in Unreal Engine
Environment . 2-14

Depth and Semantic Segmentation Visualization Using Unreal Engine
Simulation . 2-18

Stream Camera, Depth and Semantic Segmentation Data from Unreal
Engine to NVIDIA Jetson . 2-23

Customize Unreal Engine Scenes for UAVs . 2-27

Install Support Package for Customizing Scenes 2-28
Verify Software and Hardware Requirements . 2-28
Install Support Package . 2-28
Set Up Scene Customization Using Support Package 2-28

Migrate Projects Developed Using Prior Support Packages 2-31

Customize Unreal Engine Scenes Using Simulink and Unreal Editor . . . 2-32
Open Unreal Editor from Simulink . 2-32
Reparent Actor Blueprint . 2-33
Create or Modify Scenes in Unreal Editor . 2-34
Run Simulation . 2-35

Package Custom Scenes into Executable . 2-38
Package Scene into Executable Using Unreal Engine 2-38

Apply Semantic Segmentation Labels to Custom Scenes 2-41

Stereo Visual SLAM for UAV Navigation in 3D Simulation 2-47

iv Contents

Prepare Custom UAV Vehicle Mesh for the Unreal Editor 2-53
Set Up Bone Hierarchy . 2-53
Assign Materials . 2-55
Export Mesh and Armature . 2-59
Import Mesh to Unreal Editor . 2-61
Set Block Parameters . 2-62

3D Data Processing – User's Guide
3

Choose a 3-D Coordinate System . 3-2
Geodetic Coordinates . 3-2
East-North-Up Coordinates . 3-3
North-East-Down Coordinates . 3-4
Tips . 3-5

Simulink Block Examples
4

Generate Course and Yaw Commands for Orbit Following in Simulink®
. 4-2

UAV Obstacle Avoidance in Simulink . 4-4

Add GPS Sensor Noise to Multirotor Guidance Model 4-14

Simulate GPS Sensor Noise . 4-16

Simulate UAV Scenario Using Scenario Blocks . 4-18

Simulate INS Block . 4-29

Lidar and Radar Fusion in an Urban Air Mobility Scenario 4-31

Avoid Moving Obstacles Based on Radar Detections 4-48

v

UAV Toolbox Examples

1

Visualize and Playback MAVLink Flight Log
This example shows how to load a telemetry log (TLOG) containing MAVLink packets into MATLAB®.
Details of the messages are extracted for plotting. Then, to simulate the flight again, the messages
are republished over the MAVLink communication interface. This publishing mimics an unmanned
aerial vehicle (UAV) executing the flight recorded in the tlog.

Load MAVLink TLOG

Create a mavlinkdialect object using the "common.xml" dialect. Use mavlinktlog with this
dialect to load the TLOG data.

dialect = mavlinkdialect('common.xml');
logimport = mavlinktlog('mavlink_flightlog.tlog',dialect);

Extract the GPS messages from the TLOG and visualize them using geoplot.

msgs = readmsg(logimport, 'MessageName', 'GPS_RAW_INT', ...
 'Time',[0 100]);
latlon = msgs.Messages{1};
% filter out zero-valued messages
latlon = latlon(latlon.lat ~= 0 & latlon.lon ~= 0, :);
figure()
geoplot(double(latlon.lat)/1e7, double(latlon.lon)/1e7);

Extract the attitude messages from the TLOG. Specify the message name for attitude messages. Plot
the roll, pitch, yaw data using stackedplot.

1 UAV Toolbox Examples

1-2

msgs = readmsg(logimport,'MessageName','ATTITUDE','Time',[0 100]);

figure()
stackedplot(msgs.Messages{1},{'roll','pitch','yaw'});

Playback MAVLink Log Entries

Create a MAVLink communication interface and publish the messages from the TLOG to user defined
UDP port. Create a sender and receiver for passing the MAVLink messages. This communication
system works the same way that real hardware would publish messages using the MAVLink
communication protocols.

sender = mavlinkio(dialect,'SystemID',1,'ComponentID',1,...
 'AutopilotType',"MAV_AUTOPILOT_GENERIC",...
 'ComponentType',"MAV_TYPE_QUADROTOR");
connect(sender,'UDP');

destinationPort = 14550;
destinationHost = '127.0.0.1';

receiver = mavlinkio(dialect);
connect(receiver,'UDP','LocalPort',destinationPort);

subscriber = mavlinksub(receiver,'ATTITUDE','NewMessageFcn',@(~,msg)disp(msg.Payload));

Send the first 100 messages at a rate of 50 Hz.

 Visualize and Playback MAVLink Flight Log

1-3

payloads = table2struct(msgs.Messages{1});
attitudeDefinition = msginfo(dialect, 'ATTITUDE');
for msgIdx = 1:100
 sendudpmsg(sender,struct('MsgID', attitudeDefinition.MessageID, 'Payload', payloads(msgIdx)),destinationHost,destinationPort);
 pause(1/50);
end

Disconnect from both MAVLink communcation interfaces.

disconnect(receiver)
disconnect(sender)

1 UAV Toolbox Examples

1-4

Flight Instrument Gauge Visualization for a Drone
Import and visualize a drone flight log using 3-D animations and flight intrument gauges. This
example obtains a high level overview of flight performance in MATLAB® using “Flight Instruments”
(Aerospace Toolbox) functions in Aerospace Toolbox™. Then, to view signals in a custom interface in
Simulink® , the example uses the “Flight Instruments” (Aerospace Blockset)“Flight Instruments”
(Aerospace Blockset) blocks from Aerospace Blockset™

The example extracts the signals of interest from a ULOG file and plays back the UAV flight trajectory
in MATLAB. Then, those signals are replayed in a Simulink model using instrument blocks.

Import a Flight log

A drone log file records information about the flight at regular time intervals. This information gives
insight into the flight performance. Flight instrument gauges display navigation variables such as
attitude, altitude, and heading of the drone. The ULOG log file for this example was obtained from an
airplane model running in the Gazebo simulator.

Import the logfile using ulogreader. Create a flightLogSignalMapping object for ULOG files.

To understand the convention of the signals, the units, and their reference frame, inspect the
information within the plotter object. This information about units within log file becomes
important when connecting the signals to flight instrument gauges.

data = ulogreader("flight.ulg");
plotter = flightLogSignalMapping("ulog");
info(plotter,"Signal")

ans=18×4 table
 SignalName IsMapped SignalFields FieldUnits
 _____________________ ________ __ ___

 "Accel" true "AccelX, AccelY, AccelZ" "m/s^2, m/s^2, m/s^2"
 "Airspeed" true "PressDiff, IndicatedAirSpeed, Temperature" "Pa, m/s, degreeC"
 "AttitudeEuler" true "Roll, Pitch, Yaw" "rad, rad, rad"
 "AttitudeRate" true "BodyRotationRateX, BodyRotationRateY, BodyRotationRateZ" "rad/s, rad/s, rad/s"
 "AttitudeTargetEuler" true "RollTarget, PitchTarget, YawTarget" "rad, rad, rad"
 "Barometer" true "PressAbs, PressAltitude, Temperature" "Pa, m, degreeC"
 "Battery" true "Voltage_1, Voltage_2, Voltage_3, Voltage_4, Voltage_5, Voltage_6, Voltage_7, Voltage_8, Voltage_9, Voltage_10, Voltage_11, Voltage_12, Voltage_13, Voltage_14, Voltage_15, Voltage_16, RemainingCapacity" "v, v, v, v, v, v, v, v, v, v, v, v, v, v, v, v, %"
 "GPS" true "Latitude, Longitude, Altitude, GroundSpeed, CourseAngle, SatellitesVisible" "degree, degree, m, m/s, degree, N/A"
 "Gyro" true "GyroX, GyroY, GyroZ" "rad/s, rad/s, rad/s"
 "LocalENU" true "X, Y, Z" "m, m, m"
 "LocalENUTarget" true "XTarget, YTarget, ZTarget" "m, m, m"
 "LocalENUVel" true "VX, VY, VZ" "m/s, m/s, m/s"
 "LocalENUVelTarget" true "VXTarget, VYTarget, VZTarget" "m/s, m/s, m/s"
 "LocalNED" true "X, Y, Z" "m, m, m"
 "LocalNEDTarget" true "XTarget, YTarget, ZTarget" "m, m, m"
 "LocalNEDVel" true "VX, VY, VZ" "m/s, m/s, m/s"
 ⋮

Extract Signals of Interest

To visualize the drone flight using instrument gauges, extract the attitude, position, velocity, and
airspeed at each timestep. Specify the appropriate signal name from the info table in the previous
step. Call the extract function with the appropriate signal names. The time vector element of
signals are adjusted so they start at 0 seconds.

 Flight Instrument Gauge Visualization for a Drone

1-5

% Extract attitude and roll-pitch-yaw data.
rpy = extract(plotter, data,"AttitudeEuler");
rpy{1}.Time=rpy{1}.Time-rpy{1}.Time(1);

RollData = timetable(rpy{1}.Time,rpy{1}.Roll,...
 'VariableNames',{'Roll'});
PitchData = timetable(rpy{1}.Time,rpy{1}.Pitch,...
 'VariableNames',{'Pitch'});
YawData = timetable(rpy{1}.Time,rpy{1}.Yaw,...
 'VariableNames',{'Yaw'});

% Extract position and xyz data.
Position = extract(plotter, data,"LocalNED");
Position{1}.Time = Position{1}.Time-Position{1}.Time(1);

X = timetable(Position{1}.Time,Position{1}.X,...
 'VariableNames',{'X'});
Y = timetable(Position{1}.Time,Position{1}.Y,...
 'VariableNames',{'Y'});
Z = timetable(Position{1}.Time,Position{1}.Z,...
 'VariableNames',{'Z'});

% Extract velocity data.
vel = extract(plotter, data,"LocalNEDVel");
vel{1}.Time=vel{1}.Time-vel{1}.Time(1);

XVel = timetable(vel{1}.Time,vel{1}.VX,...
 'VariableNames',{'VX'});
YVel = timetable(vel{1}.Time,vel{1}.VY,...
 'VariableNames',{'VY'});
ZVel = timetable(vel{1}.Time,vel{1}.VZ,...
 'VariableNames',{'VZ'});

% Extract Airspeed magnitude data.
airspeed = extract(plotter, data,"Airspeed");
Airspeed = timetable(airspeed{1}.Time,airspeed{1}.IndicatedAirSpeed,...
 'VariableNames',{'Airspeed'});

Convert Units and Preprocess Data for Gauges

Our flight log records data in SI Units. The flight instrument gauges require a conversion to
Aerospace Standard Unit System represented by English System. This conversion is handled in the
visualization block available in attached Simulink model for the user. The turn coordinator indicates
the yaw rate of the aircraft using an indicative banking motion (which differs from the bank angle). In
order to compute the yaw rate, convert the angular rates from body frame to vehicle frame as given
below:

ψ̇ = qcos ϕ + rsin ϕ
cosθ

The inclinometer ball within turn coordinator indicates the sideslip of the aircraft. This sideslip angle
is based on the angle between the body of the aircraft and computed airspeed. For an accurate
airspeed, a good estimate of velocity and wind vector is required. Most small UAV's do not possess
sensors to estimate wind vector data or airspeed while flying. UAV's can face between 20-50% of their
airspeed in the form of crosswinds.

1 UAV Toolbox Examples

1-6

Vg- Vw=Va

To compute sideslip and turn, extract wind and attitude rate data directly from the log file.

% Extract roll, pitch and yaw rates and an estimated windspeed.
[p,q,r,wn,we] = helperExtractUnmappedData(data);

% Merge timetables.
FlightData = synchronize(X,Y,Z,RollData,PitchData,YawData,XVel,YVel,ZVel,p,q,r,Airspeed,wn,we,'union','linear');

% Assemble an array for the data.
FlightDataArray = double([seconds(FlightData.Time) FlightData.X FlightData.Y FlightData.Z FlightData.Roll ...
FlightData.Pitch FlightData.Yaw,FlightData.VX,FlightData.VY,...
 FlightData.VZ,FlightData.p,FlightData.q,FlightData.r,FlightData.Airspeed,FlightData.wn,FlightData.we]);

% Ensure time rows are unique.
[~,ind]=unique(FlightDataArray(:,1));
FlightDataArray=FlightDataArray(ind,:);

% Preprocess time data to specific times.
flightdata = double(FlightDataArray(FlightDataArray(:,1)>=0,1:end));

Visualize Standard Flight Instrument Data in MATLAB

To get a quick overview of the flight , use the animation interface introduced in the “Display Flight
Trajectory Data Using Flight Instruments and Flight Animation” (Aerospace Toolbox) example. The
helper function helperDroneInstruments creates an instrument animation interface.

helperDroneInstruments;

 Flight Instrument Gauge Visualization for a Drone

1-7

1 UAV Toolbox Examples

1-8

The Airspeed indicator dial indicates the speed of the drone. The Artificial Horizon indicator
reveals the attitude of the drone excluding yaw. The Altimeter and Climb Rate indicator reveal the
altitude as recorded within the barometer and the climb rate sensors respectively. The Turn
Coordinator indicates the yaw rate of the aircraft and sideslip. If the inclinometer skews towards left
or right, this denotes a slip or skid situation. In a coordinated turn, the sideslip should be zero.

Visualize Signals in Simulink

In Simulik, you can create custom visualizations of signals using intrument blocks to help diagnose
problems with a flight. For example, voltage and battery data in log files can help diagnose failures
due to inadequate power or voltage spikes. Extract this batter data below to visualize them.

% Extract battery data.
Battery = extract(plotter,data,"Battery");
% Extract voltage data from topic.
Voltage = timetable(Battery{1}.Time,Battery{1}.Voltage_1,...
 'VariableNames',{'Voltage_1'});
% Extract remaing battery capacity data from topic.
Capacity = timetable(Battery{1}.Time,Battery{1}.RemainingCapacity,...
 'VariableNames',{'RemainingCapacity'});

 Flight Instrument Gauge Visualization for a Drone

1-9

Open the 'dronegauge' model, which takes the loaded data and displays it on the different gauges
and the UAV animation figure.

open_system('dronegauges');

Run the model. The generated figure shows the trajectory of the UAV in real time and the gauges
show the current status of the flight.

sim('dronegauges');

1 UAV Toolbox Examples

1-10

 Flight Instrument Gauge Visualization for a Drone

1-11

Visualize Custom Flight Log
Configure the flightLogSignalMapping object to visualize data from a custom flight log.

Load Custom Flight Log

In this example, it is assumed that flight data is already parsed into MATLAB® and stored as a MAT
file. This example focuses on configuring the flightLogSignalMapping object so that it can
properly handle the log data saved in the MAT file and visualize it. The data,
customFlightData.mat, stores a structure that contains 3 fields. Fs is the sampling frequency of
the signals stored in the MAT file. IMU and Trajectory are matrices containing actual flight
information. The trajectory data and IMU data are based on a simulated flight that follows a projected
rectangular path on an XY-plane.

customData = load("customFlightData.mat");
logData = customData.logData

logData = struct with fields:
 IMU: [2785×9 double]
 Fs: 100
 Trajectory: [2785×10 double]

The IMU field in logData is an n-by-9 matrix, where the first 3 columns are accelerometer readings
in m/s2. The next 3 columns are gyroscope readings in rad/s, and the last 3 columns are
magnetometer readings in μT.

logData.IMU(1:5, :)

ans = 5×9

 0.8208 0.7968 10.7424 0.0862 0.0873 0.0862 327.6000 297.6000 283.8000
 0.8016 0.8160 10.7904 0.0883 0.0873 0.0862 327.6000 297.6000 283.8000
 0.7680 0.7680 10.7568 0.0862 0.0851 0.0851 327.6000 297.6000 283.8000
 0.8208 0.7536 10.7520 0.0873 0.0883 0.0819 327.6000 297.6000 283.8000
 0.7872 0.7728 10.7328 0.0873 0.0862 0.0830 327.6000 297.6000 283.8000

The Trajectory field in logData is an n-by-9 matrix, with the first 3 columns are XYZ NED
coordinates in m. The next 3 columns are velocity in XYZ NED direction in m/s, and the last 4
columns are quaternions describing the UAV rotation from the inertia NED frame to body frame. Each
row is a single point of the trajectory with all these parameters defined.

logData.Trajectory(1:5,:)

ans = 5×10

 0.0200 0 -4.0000 2.0000 0 -0.0036 1.0000 0 0 -0.0000
 0.0400 0 -4.0001 2.0000 0 -0.0072 1.0000 0 0 -0.0000
 0.0600 0 -4.0002 2.0000 0 -0.0108 1.0000 0 0 -0.0000
 0.0800 0 -4.0003 2.0000 0 -0.0143 1.0000 0 0 -0.0000
 0.1000 0 -4.0004 2.0000 0 -0.0179 1.0000 0 0 -0.0001

1 UAV Toolbox Examples

1-12

Visualize Custom Flight Log Using Predefined Signal Format and Plots

Create a flightLogSignalMapping object with no input argument since the custom log format
does not following a standard "ulog" or "tlog" definition.

customPlotter = flightLogSignalMapping;

The object has a predefined set of signals that you can map. By mapping these predefined signals,
you gain access to a set of predefined plots. Notice that a few signals have a "#" symbol suffix. For
these signals, you can optionally add integers as suffixes to the signal names so that the flight log
plotter can handle multiple of signals of this kind, such as secondary IMU signals and barometer
readings. Call info.

% Predefined signals
info(customPlotter, "Signal")

ans=18×4 table
 SignalName IsMapped SignalFields FieldUnits
 _____________________ ________ __ ___

 "Accel#" false "AccelX, AccelY, AccelZ" "m/s^2, m/s^2, m/s^2"
 "Airspeed#" false "PressDiff, IndicatedAirSpeed, Temperature" "Pa, m/s, degreeC"
 "AttitudeEuler" false "Roll, Pitch, Yaw" "rad, rad, rad"
 "AttitudeRate" false "BodyRotationRateX, BodyRotationRateY, BodyRotationRateZ" "rad/s, rad/s, rad/s"
 "AttitudeTargetEuler" false "RollTarget, PitchTarget, YawTarget" "rad, rad, rad"
 "Barometer#" false "PressAbs, PressAltitude, Temperature" "Pa, m, degreeC"
 "Battery" false "Voltage_1, Voltage_2, Voltage_3, Voltage_4, Voltage_5, Voltage_6, Voltage_7, Voltage_8, Voltage_9, Voltage_10, Voltage_11, Voltage_12, Voltage_13, Voltage_14, Voltage_15, Voltage_16, RemainingCapacity" "v, v, v, v, v, v, v, v, v, v, v, v, v, v, v, v, %"
 "GPS#" false "Latitude, Longitude, Altitude, GroundSpeed, CourseAngle, SatellitesVisible" "degree, degree, m, m/s, degree, N/A"
 "Gyro#" false "GyroX, GyroY, GyroZ" "rad/s, rad/s, rad/s"
 "LocalENU" false "X, Y, Z" "m, m, m"
 "LocalENUTarget" false "XTarget, YTarget, ZTarget" "m, m, m"
 "LocalENUVel" false "VX, VY, VZ" "m/s, m/s, m/s"
 "LocalENUVelTarget" false "VXTarget, VYTarget, VZTarget" "m/s, m/s, m/s"
 "LocalNED" false "X, Y, Z" "m, m, m"
 "LocalNEDTarget" false "XTarget, YTarget, ZTarget" "m, m, m"
 "LocalNEDVel" false "VX, VY, VZ" "m/s, m/s, m/s"
 ⋮

% Predefined plots
info(customPlotter,"Plot")

ans=10×4 table
 PlotName ReadyToPlot MissingSignals RequiredSignals
 _______________________ ___________ ____________________________________ ____________________________________

 "Attitude" false "AttitudeEuler, AttitudeRate, Gyro#" "AttitudeEuler, AttitudeRate, Gyro#"
 "AttitudeControl" false "AttitudeEuler, AttitudeTargetEuler" "AttitudeEuler, AttitudeTargetEuler"
 "Battery" false "Battery" "Battery"
 "Compass" false "AttitudeEuler, Mag#, GPS#" "AttitudeEuler, Mag#, GPS#"
 "GPS2D" false "GPS#" "GPS#"
 "Height" false "Barometer#, GPS#, LocalNED" "Barometer#, GPS#, LocalNED"
 "Speed" false "GPS#, Airspeed#" "GPS#, Airspeed#"
 "Trajectory" false "LocalNED, LocalNEDTarget" "LocalNED, LocalNEDTarget"
 "TrajectoryTracking" false "LocalNED, LocalNEDTarget" "LocalNED, LocalNEDTarget"
 "TrajectoryVelTracking" false "LocalNEDVel, LocalNEDVelTarget" "LocalNEDVel, LocalNEDVelTarget"

 Visualize Custom Flight Log

1-13

The flightLogSignalMapping object needs to know how data is stored in the flight log before it
can visualize the data. To associate signal names with function handles that access the relevant
information in the logData, you must map signals using mapSignal. Each signal is defined as a
timestamp vector and a signal value matrix.

For example, to map the Gyro# signal, define a timeAccess function handle based on the sensor
data sampling frequency. This function handle generates the timestamp vector for the signal values
using a global timestamp interval for the data.

timeAccess = @(x)seconds(1/x.Fs*(1:size(x.IMU)));

Next, check what fields must be defined for the Gyro# signal using info.

info(customPlotter,"Signal","Gyro#")

ans=1×4 table
 SignalName IsMapped SignalFields FieldUnits
 __________ ________ _____________________ _____________________

 "Gyro#" false "GyroX, GyroY, GyroZ" "rad/s, rad/s, rad/s"

The Gyro# signal needs three columns containing the gyroscope readings for the XYZ axes. Define
the gyroAccess function handle accordingly and map it with timeAccess using mapSignal.

gyroAccess = @(x)x.IMU(:,4:6);
mapSignal(customPlotter,"Gyro",timeAccess,gyroAccess);

Similarly, map other predefined signalsfor data that is present in the flight log. Define the value
function handles for the data. Map the signals using the same timeAccess timestamp vector
function.

% IMU data stores accelerometer and magnetometer data.
accelAccess = @(x)x.IMU(:,1:3);
magAccess = @(x)x.IMU(:,7:9)*1e-2;

% Flight trajectory in local NED coordinates
% XYZ coordinates
nedAccess = @(x)x.Trajectory(:, 1:3);
% XYZ celocities
nedVelAccess = @(x)x.Trajectory(:, 4:6);
% Roll Pitch Yaw rotations converted from a quaternion
attitudeAccess = @(x)flip(quat2eul(x.Trajectory(:, 7:10)),2);

% Configure flightLogSignalMapping for custom data
mapSignal(customPlotter, "Accel", timeAccess, accelAccess);
mapSignal(customPlotter, "Mag", timeAccess, magAccess);
mapSignal(customPlotter, "LocalNED", timeAccess, nedAccess);
mapSignal(customPlotter, "LocalNEDVel", timeAccess, nedVelAccess);
mapSignal(customPlotter, "AttitudeEuler", timeAccess, attitudeAccess);

Once all signals are mapped, customPlotter is ready to generate plots based on signal data stored
in the log. To quickly check if the signals are correctly mapped call checkSignal and specify the
logData.

checkSignal(customPlotter,logData);

--
SignalName: Gyro

1 UAV Toolbox Examples

1-14

Pass
--
SignalName: Accel
Pass
--
SignalName: Mag
Pass
--
SignalName: LocalNED
Pass
--
SignalName: LocalNEDVel
Pass
--
SignalName: AttitudeEuler
Pass

To get a preview of a mapped signal select the preview option in checkSignal.

checkSignal(customPlotter,logData,'Preview',"on",'Signal',"Accel");

--
SignalName: Accel
Pass
Press a key to continue or 'q' to quit. Figure needs to be in focus.

To visualize the flight log data, call show and specify logData. All the plots available based on the
mapped signals are shown in figures.

predefinedPlots = show(customPlotter,logData);

 Visualize Custom Flight Log

1-15

1 UAV Toolbox Examples

1-16

 Visualize Custom Flight Log

1-17

1 UAV Toolbox Examples

1-18

 Visualize Custom Flight Log

1-19

1 UAV Toolbox Examples

1-20

 Visualize Custom Flight Log

1-21

Visualize Custom Flight Log with Custom Plot

For mod details log analysis, define more signals and add more plots other than predefined plots
stored in flightLogSignalMapping. Specify a function handle that filters accelerations greater
than 1.

accelThreshold = @(x)(vecnorm(accelAccess(x)')>11)';
mapSignal(customPlotter, "HighAccel", timeAccess,accelThreshold, "AccelGreaterThan11", "N/A");

Call updatePlot to add custom plots. Specify the flight log plotter object and a name for the plot as
the first two arguments. To specify a time series of data, use "Timeseries" as the third argument,
and then list the data.

updatePlot(customPlotter, "AnalyzeAccel","Timeseries",["HighAccel.AccelGreaterThan11", "LocalNEDVel.VX", "LocalNEDVel.VY", "LocalNEDVel.VZ"]);

Define a custom function handle for generating a figure handle (see function definition below). This
function generates a periodogram using fft and other functions on the acceleration data and plots
them. The function returns a function handle.

updatePlot(customPlotter, "plotFFTAccel",@(acc)plotFFTAccel(acc),"Accel");

Check that customPlotter now contains a new signal and two new plots using info.

info(customPlotter, "Signal")

ans=19×4 table
 SignalName IsMapped SignalFields FieldUnits
 _____________________ ________ __ ___

1 UAV Toolbox Examples

1-22

 "Accel" true "AccelX, AccelY, AccelZ" "m/s^2, m/s^2, m/s^2"
 "AttitudeEuler" true "Roll, Pitch, Yaw" "rad, rad, rad"
 "Gyro" true "GyroX, GyroY, GyroZ" "rad/s, rad/s, rad/s"
 "HighAccel" true "AccelGreaterThan11" "N/A"
 "LocalNED" true "X, Y, Z" "m, m, m"
 "LocalNEDVel" true "VX, VY, VZ" "m/s, m/s, m/s"
 "Mag" true "MagX, MagY, MagZ" "Gs, Gs, Gs"
 "Airspeed#" false "PressDiff, IndicatedAirSpeed, Temperature" "Pa, m/s, degreeC"
 "AttitudeRate" false "BodyRotationRateX, BodyRotationRateY, BodyRotationRateZ" "rad/s, rad/s, rad/s"
 "AttitudeTargetEuler" false "RollTarget, PitchTarget, YawTarget" "rad, rad, rad"
 "Barometer#" false "PressAbs, PressAltitude, Temperature" "Pa, m, degreeC"
 "Battery" false "Voltage_1, Voltage_2, Voltage_3, Voltage_4, Voltage_5, Voltage_6, Voltage_7, Voltage_8, Voltage_9, Voltage_10, Voltage_11, Voltage_12, Voltage_13, Voltage_14, Voltage_15, Voltage_16, RemainingCapacity" "v, v, v, v, v, v, v, v, v, v, v, v, v, v, v, v, %"
 "GPS#" false "Latitude, Longitude, Altitude, GroundSpeed, CourseAngle, SatellitesVisible" "degree, degree, m, m/s, degree, N/A"
 "LocalENU" false "X, Y, Z" "m, m, m"
 "LocalENUTarget" false "XTarget, YTarget, ZTarget" "m, m, m"
 "LocalENUVel" false "VX, VY, VZ" "m/s, m/s, m/s"
 ⋮

info(customPlotter, "Plot")

ans=12×4 table
 PlotName ReadyToPlot MissingSignals RequiredSignals
 _______________________ ___________ _____________________ ____________________________________

 "AnalyzeAccel" true "" "HighAccel, LocalNEDVel"
 "Attitude" true "AttitudeRate" "AttitudeEuler, AttitudeRate, Gyro#"
 "AttitudeControl" true "AttitudeTargetEuler" "AttitudeEuler, AttitudeTargetEuler"
 "Compass" true "GPS#" "AttitudeEuler, Mag#, GPS#"
 "Height" true "Barometer#, GPS#" "Barometer#, GPS#, LocalNED"
 "Trajectory" true "LocalNEDTarget" "LocalNED, LocalNEDTarget"
 "TrajectoryTracking" true "LocalNEDTarget" "LocalNED, LocalNEDTarget"
 "TrajectoryVelTracking" true "LocalNEDVelTarget" "LocalNEDVel, LocalNEDVelTarget"
 "plotFFTAccel" true "" "Accel"
 "Battery" false "Battery" "Battery"
 "GPS2D" false "GPS#" "GPS#"
 "Speed" false "GPS#, Airspeed#" "GPS#, Airspeed#"

Specify which plot names you want to plot. Call show using "PlotsToShow" to visualize the analysis
of the acceleration data.

accelAnalysisProfile = ["AnalyzeAccel", "plotFFTAccel"];
accelAnalysisPlots = show(customPlotter, logData, "PlotsToShow", accelAnalysisProfile);

 Visualize Custom Flight Log

1-23

1 UAV Toolbox Examples

1-24

This example has shown how to use the flightLogSignalMapping object to look at predefined
signals and plots, as well as customize your own plots for flight log analysis.

Analyze Acceleration Data Function Definition

function h = plotFFTAccel(acc)
 h = figure("Name", "AccelFFT");
 ax = newplot(h);
 v = acc.Values{1};
 Fs = v.Properties.SampleRate;
 N = floor(length(v.AccelX)/2)*2;
 hold(ax, "on");
 for idx = 1:3
 x = v{1:N, idx};
 xdft = fft(x);
 xdft = xdft(1:N/2+1);
 psdx = (1/(Fs*N)) * abs(xdft).^2;
 psdx(2:end-1) = 2*psdx(2:end-1);
 freq = 0:Fs/length(x):Fs/2;
 plot(ax, freq, 10*log10(psdx));
 end
 hold(ax, "off");
 title("Periodogram Using FFT");
 xlabel("f (Hz)");
 ylabel("Power/Frequency (dB/Hz)");

 Visualize Custom Flight Log

1-25

 legend("AccelX", "AccelY", "AccelZ");
end

1 UAV Toolbox Examples

1-26

Analyze UAV Autopilot Flight Log Using Flight Log Analyzer
This example shows you how to launch the Flight Log Analyzer app, import flight log data, create
figures and plots, export signals and using custom signal mapping in the app.

The Flight Log Analyzer app enables you to analyze log files generated by simulated or real flights.

Log analysis helps find the root cause of a crash, or monitor the health during a flight of a vehicle.
You can perform basic analysis to determine:

• How well the controllers track their references
• Whether there is any strong vibration
• If the vehicle experiences power failures

Open Flight Log Analyzer App

In the Apps tab, under Control System Design and Analysis, click Flight Log Analyzer.

Alternatively, you can use the flightLogAnalyzer function from the MATLAB® command prompt.

Import ULOG File

Load the ULOG file.

ulg = ulogreader('flight.ulg')

ulg =
 ulogreader with properties:

 FileName: 'flight.ulg'
 StartTime: 00:00:00.176000
 EndTime: 00:02:15.224000
 AvailableTopics: [51×5 table]
 DropoutIntervals: [0×2 duration]

On the Flight Log Analyzer app toolstrip, select Import > From Workspace. In the Log Data
section of the Import flight log signal mapping and log data from Workspace dialog box, select the
ulogreader object ulg and click Import.

 Analyze UAV Autopilot Flight Log Using Flight Log Analyzer

1-27

By default, the app displays a satellite map with logged GPS data and the flight modes as a table. The
flight modes, along with their corresponding start and end times, are tabulated in the Flight Modes
pane.

1 UAV Toolbox Examples

1-28

Create Figures and Plots

Every UAV (fixed or multi-rotor) is equipped with a set of sensors, such as a gyroscope,
accelerometer, magnetometer, and barometer, to determine the vehicle state. A vehicle state includes
the position, velocity, altitude, speed, and rates of rotation of the vehicle.

Add Predefined Plot

In the Plot section of the app toolstrip, click Add Figure to add an empty figure to the plotting pane.
Then, in the plot gallery, click IMU to add plots to the figure for the gyroscope, Gyro, and
accelerometer, Accelerometer.

 Analyze UAV Autopilot Flight Log Using Flight Log Analyzer

1-29

You can use various predefined plots from the plot gallery to visualize data from different sensors.

Change Plot Focus Using Panner

In the Flight Modes pane, find the first instance of the Loiter flight mode and note its Start Time
and End Time values. Focus on the flight mode by, in the Panner pane, dragging the red and blue
handles to the Start Time and End Time, respectively, of the desired flight mode. Alternatively, you
can type the Start Time and End Time values in the Left and Right boxes, beneath the strip plot.
Click the Acceleration plot to focus on it.

1 UAV Toolbox Examples

1-30

If UAV vibration is in a good range, then z-axis acceleration should remain below x-axis and y-axis
acceleration. The plotted flight data indicates that, at this point in the flight, UAV vibration is in a
good range. Using the Panner, focus on the other three Loiter flight modes and observe the
acceleration of the UAV.

Add Custom Plot

Next, create a custom Timeseries plot to compare the estimated roll against the roll target.

1 First, in the Custom Plots section of the plot gallery, click Timeseries.
2 In the Signals pane, click Add Signal twice to add two signals.
3 Double-click the Y-Axis column of the first signal and, in the Signal Browser pane, type

RollTarget in the Search box, and then click the arrow next to AttitudeTargetEuler and
select RollTarget. Then, click Update.

4 Repeat the previous three steps for the second signal to add Roll.
5 Rename the first signal to RollTarget and the second signal to Roll. To rename a signal,

double-click its entry in the Signal Name column and type the new name.
6 In the Details pane, select Show Legend to show the legend on the plot.

The plot shows that the estimated roll closely follows the roll target until the last few seconds of the
flight.

 Analyze UAV Autopilot Flight Log Using Flight Log Analyzer

1-31

Export Signals

To further analyze the data, you can export signals. On the app toolstrip, click Export, and then
select Export Signal.

1 UAV Toolbox Examples

1-32

Use the Export Signal dialog box to select signals of interest and export them To Workspace or To
MAT-file. The signals are exported as a timetable.

Using Custom Signal Mapping in Flight Log Analyzer App

The default signal mapping returns a predefined set of signals.

flsmObj = flightLogSignalMapping('ulog');
info(flsmObj,"Signal")

 Analyze UAV Autopilot Flight Log Using Flight Log Analyzer

1-33

ans=18×4 table
 SignalName IsMapped SignalFields FieldUnits
 _____________________ ________ __ ___

 "Accel" true "AccelX, AccelY, AccelZ" "m/s^2, m/s^2, m/s^2"
 "Airspeed" true "PressDiff, IndicatedAirSpeed, Temperature" "Pa, m/s, degreeC"
 "AttitudeEuler" true "Roll, Pitch, Yaw" "rad, rad, rad"
 "AttitudeRate" true "BodyRotationRateX, BodyRotationRateY, BodyRotationRateZ" "rad/s, rad/s, rad/s"
 "AttitudeTargetEuler" true "RollTarget, PitchTarget, YawTarget" "rad, rad, rad"
 "Barometer" true "PressAbs, PressAltitude, Temperature" "Pa, m, degreeC"
 "Battery" true "Voltage_1, Voltage_2, Voltage_3, Voltage_4, Voltage_5, Voltage_6, Voltage_7, Voltage_8, Voltage_9, Voltage_10, Voltage_11, Voltage_12, Voltage_13, Voltage_14, Voltage_15, Voltage_16, RemainingCapacity" "v, v, v, v, v, v, v, v, v, v, v, v, v, v, v, v, %"
 "GPS" true "Latitude, Longitude, Altitude, GroundSpeed, CourseAngle, SatellitesVisible" "degree, degree, m, m/s, degree, N/A"
 "Gyro" true "GyroX, GyroY, GyroZ" "rad/s, rad/s, rad/s"
 "LocalENU" true "X, Y, Z" "m, m, m"
 "LocalENUTarget" true "XTarget, YTarget, ZTarget" "m, m, m"
 "LocalENUVel" true "VX, VY, VZ" "m/s, m/s, m/s"
 "LocalENUVelTarget" true "VXTarget, VYTarget, VZTarget" "m/s, m/s, m/s"
 "LocalNED" true "X, Y, Z" "m, m, m"
 "LocalNEDTarget" true "XTarget, YTarget, ZTarget" "m, m, m"
 "LocalNEDVel" true "VX, VY, VZ" "m/s, m/s, m/s"
 ⋮

In addition the predefined set of signals, you can map other signals present in the flight log. For
example, use mapSignal to map WindSpeed to the flightLogSignalMapping object, flsmObj.

mapSignal(flsmObj,"WindSpeed", ...
 @(data)getTime(getTable(data,"wind_estimate")), ...
 @(data)getModeValue(getTable(data,"wind_estimate")), ...
 ["WindSpeed_East","WindSpeed_North"]);

Check that flsmObj now contains the new signal.

info(flsmObj,"Signal")

ans=19×4 table
 SignalName IsMapped SignalFields FieldUnits
 _____________________ ________ __ ___

 "Accel" true "AccelX, AccelY, AccelZ" "m/s^2, m/s^2, m/s^2"
 "Airspeed" true "PressDiff, IndicatedAirSpeed, Temperature" "Pa, m/s, degreeC"
 "AttitudeEuler" true "Roll, Pitch, Yaw" "rad, rad, rad"
 "AttitudeRate" true "BodyRotationRateX, BodyRotationRateY, BodyRotationRateZ" "rad/s, rad/s, rad/s"
 "AttitudeTargetEuler" true "RollTarget, PitchTarget, YawTarget" "rad, rad, rad"
 "Barometer" true "PressAbs, PressAltitude, Temperature" "Pa, m, degreeC"
 "Battery" true "Voltage_1, Voltage_2, Voltage_3, Voltage_4, Voltage_5, Voltage_6, Voltage_7, Voltage_8, Voltage_9, Voltage_10, Voltage_11, Voltage_12, Voltage_13, Voltage_14, Voltage_15, Voltage_16, RemainingCapacity" "v, v, v, v, v, v, v, v, v, v, v, v, v, v, v, v, %"
 "GPS" true "Latitude, Longitude, Altitude, GroundSpeed, CourseAngle, SatellitesVisible" "degree, degree, m, m/s, degree, N/A"
 "Gyro" true "GyroX, GyroY, GyroZ" "rad/s, rad/s, rad/s"
 "LocalENU" true "X, Y, Z" "m, m, m"
 "LocalENUTarget" true "XTarget, YTarget, ZTarget" "m, m, m"
 "LocalENUVel" true "VX, VY, VZ" "m/s, m/s, m/s"
 "LocalENUVelTarget" true "VXTarget, VYTarget, VZTarget" "m/s, m/s, m/s"
 "LocalNED" true "X, Y, Z" "m, m, m"
 "LocalNEDTarget" true "XTarget, YTarget, ZTarget" "m, m, m"
 "LocalNEDVel" true "VX, VY, VZ" "m/s, m/s, m/s"
 ⋮

To use this custom signal mapping in the Flight Log Analyzer app:

1 UAV Toolbox Examples

1-34

1 On the app toolstrip, click Import and select From Workspace.
2 In the dialog box, select flsmObj from the Signal Mapping list.
3 Select the ulogreader object ulg from the Log Data section.
4 Click Import.

Create a custom Timeseries plot and follow the steps in Add Custom Plot on page 1-0 to add the
WindSpeed_East and WindSpeed_North signals from the Signal Browser.

 Analyze UAV Autopilot Flight Log Using Flight Log Analyzer

1-35

You can use this process to map other signals to the custom signal mapping object and visualize them
in the app.

References

[1] PX4 Autopilot. "Flight Log Analysis." PX4 User Guide. Accessed December 14, 2020. https://
docs.px4.io/master/en/log/flight_log_analysis.html

[2] PX4 Autopilot. "Log Analysis Using Flight Review." PX4 User Guide. Accessed December 14, 2020.
https://docs.px4.io/master/en/log/flight_review.html

1 UAV Toolbox Examples

1-36

https://docs.px4.io/master/en/log/flight_log_analysis.html
https://docs.px4.io/master/en/log/flight_log_analysis.html
https://docs.px4.io/master/en/log/flight_review.html

Tuning Waypoint Follower for Fixed-Wing UAV
This example designs a waypoint following controller for a fixed-wing unmanned aerial vehicle (UAV).
The Guidance Model and Waypoint Follower blocks are the main components that simulate the UAV
guidance model and generate commands for following waypoints.

The example iterates through different control configurations and demonstrates UAV flight behavior
by simulating a kinematic model for fixed-wing UAV.

Guidance Model Configuration

The fixed-wing guidance model approximates the kinematic behavior of a closed-loop system
consisting of the fixed-wing aerodynamics and an autopilot. This guidance model is suitable for
simulating small UAV flights at a low-fidelity near the stable flight condition of the UAV. We can use
the guidance model to simulate the flight status of the fixed-wing UAV guided by a waypoint follower.

The following Simulink® model can be used to observe the fixed-wing guidance model response to
step control inputs.

open_system('uavStepResponse');

Integration with Waypoint Follower

The fixedWingPathFollowing model integrates the waypoint follower with the fixed-wing
guidance model. This model demonstrates how to extract necessary information from the guidance
model output bus signal and feed them into the waypoint follower. The model assembles the control
and environment inputs for the guidance model block.

open_system('fixedWingPathFollowing');

Waypoint Follower Configuration

The waypoint follower controller includes two parts, a UAV Waypoint Follower block and a fixed-
wing UAV heading controller.

 Tuning Waypoint Follower for Fixed-Wing UAV

1-37

The UAV Waypoint Follower block computes a desired heading for the UAV based on the current pose,
lookahead distance, and a given set of waypoints. Flying along these heading directions, the UAV
visits each waypoint (within the specified transition radius) in the list.

The Heading Control block is a proportional controller that regulates the UAV heading angle by
controlling the roll angle under the coordinated-flight condition.

The UAV Animation block visualizes the UAV flight path and attitude. For fixed-wing simulation in a
windless condition, the body pitch angle is the sum of the flight path angle and the attack angle. For
small fixed-wing UAV, the attack angle is usually controlled by the autopilot and remains relatively
small. For visualization purposes, we approximate the pitch angle with the flight path angle. In a
windless, zero side-slip condition, the body yaw angle is the same as heading angle.

Tune Waypoint Following Controller through Simulation

Simulate the model. Use the slider to adjust the controller waypoint following.

sim("fixedWingPathFollowing")

The next figures shows the flight behavior with a small lookahead distance (5) and a fast heading
control (3.9). Notice the UAV follows a very curvy path between the waypoints.

1 UAV Toolbox Examples

1-38

The next figure shows the flight behavior with a large lookahead distance and slow heading control.

 Tuning Waypoint Follower for Fixed-Wing UAV

1-39

Summary

This example tunes UAV flight controller by manually iterating through multiple sets of control
parameters. This process can be extended to automatically sweep large set of control parameters to
obtain optimal control configurations for customized navigation controllers.

Once the flight behavior satisfies design specification, consider testing the chosen control parameters
with high-fidelity models built with Aerospace Blockset or with external flight simulators.

% close Simulink models
close_system("uavStepResponse");
close_system("fixedWingPathFollowing");

1 UAV Toolbox Examples

1-40

Approximate High-Fidelity UAV model with UAV Guidance
Model block

Simulation models often need different levels of fidelity during different development stages. During
the rapid-prototyping stage, we would like to quickly experiment and tune parameters to test
different autonomous algorithms. During the production development stage, we would like to validate
our algorithms against models of increasing fidelities. In this example, we demonstrate a method to
approximate a high-fidelity model with the Guidance Model block and use it to prototype and tune a
waypoint following navigation system. See “Tuning Waypoint Follower for Fixed-Wing UAV” on page
1-37. The same navigation system is tested against a high-fidelity model to verify its performance.

The example model uses a high-fidelity unmanned aerial vehicle (UAV) model consisting of a plant
model and a mid-level built-in autopilot. This model contains close to a thousand blocks and it is quite
complicated to work with. As a first step in the development process, we created a variant system
that can switch between this high-fidelity model and the UAV Guidance Model block. The high-fidelity
model is extracted from a File Exchange entry, Simulink Drone Reference Application.

UAV model of different fidelity

uavModel = 'FixedWingModel.slx';
open_system(uavModel);

You can switch between the low and high-fidelity models by changing a MATLAB® variable value
stored in the data dictionary associated with this model.

plantDataDictionary = Simulink.data.dictionary.open('pathFollowingData.sldd');
plantDataSet = getSection(plantDataDictionary,'Design Data');

% Switch to high-fidelity model
assignin(plantDataSet,'useHighFidelity',1);

% Switch to low-fidelity model
assignin(plantDataSet,'useHighFidelity',0);

 Approximate High-Fidelity UAV model with UAV Guidance Model block

1-41

https://www.mathworks.com/matlabcentral/fileexchange/67625-simulink-drone-reference-application

Approximate high-fidelity fixed-wing model with low-fidelity guidance model

To approximate the high-fidelity model with the UAV Guidance Model block, create step control
signals to feed into the model and observe the step response to RollAngle, Height, and AirSpeed
commands.

stepModel = 'stepResponse';
open_system(stepModel)

First, command a change in roll angle.

controlBlock = get_param('stepResponse/Step Control Input','Object');
controlBlock.StepControl = 'RollAngle Step Control';

assignin(plantDataSet,'useHighFidelity',1);

sim(stepModel);

Starting serial model reference simulation build
Successfully updated the model reference simulation target for: PlantModel
Successfully updated the model reference simulation target for: FixedWingModel

Build Summary

Simulation targets built:

Model Action Rebuild Reason
==
PlantModel Code generated and compiled PlantModel_msf.mexw64 does not exist.
FixedWingModel Code generated and compiled FixedWingModel_msf.mexw64 does not exist.

2 of 2 models built (0 models already up to date)
Build duration: 0h 3m 25.623s

1 UAV Toolbox Examples

1-42

highFidelityRollAngle = RollAngle.Data(:);
highFidelityTime = RollAngle.Time;

figure()
plot(highFidelityTime, highFidelityRollAngle,'--r');
title('Roll Angle Step Response')

Zooming into the simulation result above, you see the characteristics of the roll angle controller built
into the high-fidelity model. The settling time for the roll angle is close to 2.5 seconds.

xlim([75 80])
ylim([-0.1 0.548])

 Approximate High-Fidelity UAV model with UAV Guidance Model block

1-43

For a second-order PD controller, to achieve this settling time with a critically damped system, the
following gains should be used to configure the UAV Guidance Model block inside the low-fidelity
variant of the UAV model. For this example, the UAV Guidance Model block is simulated using code
generation to increase speed for multiple runs. See the block parameters.

zeta = 1.0; % critically damped
ts = 2.5; % 2 percent settling time
wn = 5.8335/(ts*zeta);
newRollPD = [wn^2 2*zeta*wn];

Set the new gains and simulate the step response for the low-fidelity model. Compare it to the
original response.

load_system(uavModel)
set_param('FixedWingModel/FixedWingModel/LowFidelity/Fixed Wing UAV Guidance Model',...
 'PDRollFixedWing',strcat('[',num2str(newRollPD),']'))
save_system(uavModel)

assignin(plantDataSet, 'useHighFidelity', 0);

sim(stepModel);

Starting serial model reference simulation build
Successfully updated the model reference simulation target for: FixedWingModel

Build Summary

1 UAV Toolbox Examples

1-44

Simulation targets built:

Model Action Rebuild Reason
===
FixedWingModel Code generated and compiled Model or library FixedWingModel has changed.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 32.72s

lowFidelityRollAngle = RollAngle.Data(:);
lowFidelityTime = RollAngle.Time;

hold on;
plot(lowFidelityTime, lowFidelityRollAngle,'-b');
legend('High-Fidelity Response', 'Low-Fidelity Response', 'Location','southeast');

The low-fidelity model achieves a similar step response. Similarly, we can tune the other two control
channels: Height and AirSpeed. More sophisticated methods can be used here to optimize the
control gains instead of visual inspection of the control response. Consider using System
Identification Toolbox® to perform further analysis of the high-fidelity UAV model behavior.

controlBlock.StepControl = 'AirSpeed Step Control';
assignin(plantDataSet, 'useHighFidelity', 0);

sim(stepModel);

 Approximate High-Fidelity UAV model with UAV Guidance Model block

1-45

Starting serial model reference simulation build
Model reference simulation target for FixedWingModel is up to date.

Build Summary

0 of 1 models built (1 models already up to date)
Build duration: 0h 0m 4.191s

lowFidelityAirSpeed = AirSpeed.Data(:);
lowFidelityTime = AirSpeed.Time;

assignin(plantDataSet, 'useHighFidelity', 1);

sim(stepModel);

Starting serial model reference simulation build
Model reference simulation target for PlantModel is up to date.
Successfully updated the model reference simulation target for: FixedWingModel

Build Summary

Simulation targets built:

Model Action Rebuild Reason
===
FixedWingModel Code generated and compiled Variant control useHighFidelity == 0 value has changed from true to false.

1 of 2 models built (1 models already up to date)
Build duration: 0h 1m 2.104s

highFidelityAirSpeed = AirSpeed.Data(:);
highFidelityTime = AirSpeed.Time;

figure()
plot(lowFidelityTime, lowFidelityAirSpeed,'-b');
hold on;
plot(highFidelityTime, highFidelityAirSpeed,'--r');
legend('Low-Fidelity Response', 'High-Fidelity Response', 'Location','southeast');
title('Air Speed Step Response')
xlim([70 80])
ylim([17.5 19.2])

1 UAV Toolbox Examples

1-46

controlBlock.StepControl = 'Height Step Control';
assignin(plantDataSet, 'useHighFidelity', 0);

sim(stepModel);

Starting serial model reference simulation build
Successfully updated the model reference simulation target for: FixedWingModel

Build Summary

Simulation targets built:

Model Action Rebuild Reason
===
FixedWingModel Code generated and compiled Variant control useHighFidelity == 1 value has changed from true to false.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 27.077s

lowFidelityHeight = Height.Data(:);
lowFidelityTime = Height.Time;

assignin(plantDataSet, 'useHighFidelity', 1);

sim(stepModel);

Starting serial model reference simulation build
Model reference simulation target for PlantModel is up to date.

 Approximate High-Fidelity UAV model with UAV Guidance Model block

1-47

Successfully updated the model reference simulation target for: FixedWingModel

Build Summary

Simulation targets built:

Model Action Rebuild Reason
===
FixedWingModel Code generated and compiled Variant control useHighFidelity == 0 value has changed from true to false.

1 of 2 models built (1 models already up to date)
Build duration: 0h 1m 1.299s

highFidelityHeight = Height.Data(:);
highFidelityTime = Height.Time;

figure()
plot(lowFidelityTime, lowFidelityHeight,'-b');
hold on;
plot(highFidelityTime, highFidelityHeight,'--r');
legend('Low-Fidelity Response', 'High-Fidelity Response', 'Location','southeast');
title('Height Step Response')
xlim([70 150])
ylim([49 56])

1 UAV Toolbox Examples

1-48

Test navigation algorithm with low-fidelity model

Now that we have approximated the high-fidelity model with the UAV Guidance Model block, we
can try to replace it with the UAV Guidance Model block in the “Tuning Waypoint Follower for Fixed-
Wing UAV” on page 1-37 example. Test the effect of the lookahead distance and heading control gains
against these models of different fidelities.

navigationModel = 'pathFollowing';
open_system(navigationModel);

assignin(plantDataSet,'useHighFidelity',0);

sim(navigationModel);

Starting serial model reference simulation build
Successfully updated the model reference simulation target for: FixedWingModel

Build Summary

Simulation targets built:

Model Action Rebuild Reason
===
FixedWingModel Code generated and compiled Variant control useHighFidelity == 1 value has changed from true to false.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 30.518s

figure
visualizeSimStates(simStates);

 Approximate High-Fidelity UAV model with UAV Guidance Model block

1-49

Validate with high-fidelity model

assignin(plantDataSet,'useHighFidelity',1);

sim(navigationModel);

Starting serial model reference simulation build
Model reference simulation target for PlantModel is up to date.
Successfully updated the model reference simulation target for: FixedWingModel

Build Summary

Simulation targets built:

Model Action Rebuild Reason
===
FixedWingModel Code generated and compiled Variant control useHighFidelity == 0 value has changed from true to false.

1 of 2 models built (1 models already up to date)
Build duration: 0h 1m 1.491s

figure
visualizeSimStates(simStates);

1 UAV Toolbox Examples

1-50

Conclusion

This example shows how we can approximate a high-fidelity model with a low-fidelity abstraction of a
fixed-wing UAV. The opposite approach can be used as well to help with choosing autopilot control
gains for the high-fidelity model. You can first decide acceptable characteristics of an autopilot
control response by simulating a low-fidelity model in different test senarios and then tune the high-
fidelity model autopilot accordingly.

discardChanges(plantDataDictionary);
clear plantDataSet
clear plantDataDictionary
close_system(uavModel, 0);
close_system(stepModel, 0);
close_system(navigationModel, 0);

See Also
UAV Guidance Model | fixedwing | multirotor

More About
• “Tuning Waypoint Follower for Fixed-Wing UAV” on page 1-37
• “Explore Simulink Bus Capabilities” (Simulink)

 Approximate High-Fidelity UAV model with UAV Guidance Model block

1-51

Motion Planning with RRT for Fixed-Wing UAV
This example demonstrates motion planning of a fixed-wing unmanned aerial vehicle (UAV) using the
rapidly exploring random tree (RRT) algorithm given a start and goal pose on a 3-D map. A fixed-wing
UAV is nonholonomic in nature, and must obey aerodynamic constraints like maximum roll angle,
flight path angle, and airspeed when moving between waypoints.

In this example you will set up a 3-D map, provide the start pose and goal pose, plan a path with RRT
using 3-D Dubins motion primitives, smooth the obtained path, and simulate the flight of the UAV.

% Set RNG seed for repeatable result
rng(1,"twister");

Load Map

Load the 3-D occupancy map uavMapCityBlock.mat, which contains a set of pregenerated
obstacles, into the workspace. The occupancy map is in an ENU (East-North-Up) frame.

mapData = load("uavMapCityBlock.mat","omap");
omap = mapData.omap;
% Consider unknown spaces to be unoccupied
omap.FreeThreshold = omap.OccupiedThreshold;

Using the map for reference, select an unoccupied start pose and goal pose.

startPose = [12 22 25 pi/2];
goalPose = [150 180 35 pi/2];
figure("Name","StartAndGoal")
hMap = show(omap);
hold on
scatter3(hMap,startPose(1),startPose(2),startPose(3),30,"red","filled")
scatter3(hMap,goalPose(1),goalPose(2),goalPose(3),30,"green","filled")
hold off
view([-31 63])

1 UAV Toolbox Examples

1-52

Plan a Path with RRT Using 3-D Dubins Motion Primitives

RRT is a tree-based motion planner that builds a search tree incrementally from random samples of a
given state space. The tree eventually spans the search space and connects the start state and the
goal state. Connect the two states using a uavDubinsConnection object that satisfies aerodynamic
constraints. Use the validatorOccupancyMap3D object for collision checking between the fixed-
wing UAV and the environment.

Define the State Space Object

This example provides a predefined state space, ExampleHelperUavStateSpace, for path planning.
The state space is defined as [x y z headingAngle], where [x y z] specifies the position of the
UAV and headingAngle specifies the heading angle in radians. The example uses a
uavDubinsConnection object as the kinematic model for the UAV, which is constrained by
maximum roll angle, airspeed, and flight path angle. Create the state space object by specifying the
maximum roll angle, airspeed, and flight path angle limits properties of the UAV as name-value pairs.
Use the "Bounds" name-value pair argument to specify the position and orientation boundaries of
the UAV as a 4-by-2 matrix, where the first three rows represent the x-, y-, and z-axis boundaries
inside the 3-D occupancy map and the last row represents the heading angle in the range [-pi, pi]
radians.

ss = ExampleHelperUAVStateSpace("MaxRollAngle",pi/6,...
 "AirSpeed",6,...
 "FlightPathAngleLimit",[-0.1 0.1],...
 "Bounds",[-20 220; -20 220; 10 100; -pi pi]);

 Motion Planning with RRT for Fixed-Wing UAV

1-53

Set the threshold bounds of the workspace based on the target goal pose. This threshold dictates how
large the target workspace goal region around the goal pose is, which is used for bias sampling of the
workspace goal region approach.

threshold = [(goalPose-0.5)' (goalPose+0.5)'; -pi pi];

Use the setWorkspaceGoalRegion function to update the goal pose and the region around it.

setWorkspaceGoalRegion(ss,goalPose,threshold)

Define the State Validator Object

The validatorOccupancyMap3D object determines that a state is invalid if the xyz-location is
occupied on the map. A motion between two states is valid only if all intermediate states are valid,
which means the UAV does not pass through any occupied location on the map. Create a
validatorOccupancyMap3D object by specifying the state space object and the inflated map. Then
set the validation distance, in meters, for interpolating between states.

sv = validatorOccupancyMap3D(ss,"Map",omap);
sv.ValidationDistance = 0.1;

Set Up the RRT Path Planner

Create a plannerRRT object by specifying the state space and state validator as inputs. Set the
MaxConnectionDistance, GoalBias, and MaxIterations properties of the planner object, and
then specify a custom goal function. This goal function determines that a path has reached the goal if
the Euclidean distance to the target is below a threshold of 5 m.

planner = plannerRRT(ss,sv);
planner.MaxConnectionDistance = 50;
planner.GoalBias = 0.10;
planner.MaxIterations = 400;
planner.GoalReachedFcn = @(~,x,y)(norm(x(1:3)-y(1:3)) < 5);

Execute Path Planning

Perform RRT-based path planning in 3-D space. The planner finds a path that is collision-free and
suitable for fixed-wing flight.

[pthObj,solnInfo] = plan(planner,startPose,goalPose);

Simulate a UAV Following the Planned Path

Visualize the planned path. Interpolate the planned path based on the UAV Dubins connections. Plot
the interpolated states as a green line.

Simulate the UAV flight using the provided helper function, exampleHelperSimulateUAV, which
requires the waypoints, airspeed, and time to reach the goal (based on airspeed and path length). The
helper function uses the fixedwing guidance model to simulate the UAV behavior based on control
inputs generated from the waypoints. Plot the simulated states as a red line.

Notice that the simulated UAV flight deviates slightly from the planned path because of small control
tracking errors. Also, the 3-D Dubins path assumes instantaneous changes in the UAV roll angle, but
the actual dynamics have a slower response to roll commands. One way to compensate for this lag is
to plan paths with more conservative aerodynamic constraints.

if (solnInfo.IsPathFound)
 figure("Name","OriginalPath")

1 UAV Toolbox Examples

1-54

 % Visualize the 3-D map
 show(omap)
 hold on
 scatter3(startPose(1),startPose(2),startPose(3),30,"red","filled")
 scatter3(goalPose(1),goalPose(2),goalPose(3),30,"green","filled")

 interpolatedPathObj = copy(pthObj);
 interpolate(interpolatedPathObj,1000)

 % Plot the interpolated path based on UAV Dubins connections
 hReference = plot3(interpolatedPathObj.States(:,1), ...
 interpolatedPathObj.States(:,2), ...
 interpolatedPathObj.States(:,3), ...
 "LineWidth",2,"Color","g");

 % Plot simulated UAV trajectory based on fixed-wing guidance model
 % Compute total time of flight and add a buffer
 timeToReachGoal = 1.05*pathLength(pthObj)/ss.AirSpeed;
 waypoints = interpolatedPathObj.States;
 [xENU,yENU,zENU] = exampleHelperSimulateUAV(waypoints,ss.AirSpeed,timeToReachGoal);
 hSimulated = plot3(xENU,yENU,zENU,"LineWidth",2,"Color","r");
 legend([hReference,hSimulated],"Reference","Simulated","Location","best")
 hold off
 view([-31 63])
end

 Motion Planning with RRT for Fixed-Wing UAV

1-55

Smooth Dubins Path and Simulate UAV Trajectory

The original planned path makes some unnecessary turns while navigating towards the goal. Simplify
the 3-D Dubins path by using the path smoothing algorithm provided with the example,
exampleHelperUAVPathSmoothing. This function removes intermediate 3-D Dubins poses based
on an iterative strategy. For more information on the smoothing strategy, see [1 on page 1-0]. The
smoothing function connects non-sequential 3-D Dubins poses with each other as long as doing so
does not result in a collision. The smooth paths generated by this process improve tracking
characteristics for the fixed-wing simulation model. Simulate the fixed-wing UAV model with these
new, smoothed waypoints.

if (solnInfo.IsPathFound)
 smoothWaypointsObj = exampleHelperUAVPathSmoothing(ss,sv,pthObj);

 figure("Name","SmoothedPath")
 % Plot the 3-D map
 show(omap)
 hold on
 scatter3(startPose(1),startPose(2),startPose(3),30,"red","filled")
 scatter3(goalPose(1),goalPose(2),goalPose(3),30,"green","filled")

 interpolatedSmoothWaypoints = copy(smoothWaypointsObj);
 interpolate(interpolatedSmoothWaypoints,1000)

 % Plot smoothed path based on UAV Dubins connections
 hReference = plot3(interpolatedSmoothWaypoints.States(:,1), ...
 interpolatedSmoothWaypoints.States(:,2), ...
 interpolatedSmoothWaypoints.States(:,3), ...
 "LineWidth",2,"Color","g");

 % Plot simulated flight path based on fixed-wing guidance model
 waypoints = interpolatedSmoothWaypoints.States;
 timeToReachGoal = 1.05*pathLength(smoothWaypointsObj)/ss.AirSpeed;
 [xENU,yENU,zENU] = exampleHelperSimulateUAV(waypoints,ss.AirSpeed,timeToReachGoal);
 hSimulated = plot3(xENU,yENU,zENU,"LineWidth",2,"Color","r");

 legend([hReference,hSimulated],"SmoothedReference","Simulated","Location","best")
 hold off
 view([-31 63]);
end

1 UAV Toolbox Examples

1-56

The smoothed path is much shorter and shows improved tracking overall.

References

[1] Beard, Randal W., and Timothy W. McLain. Small Unmanned Aircraft: Theory and Practice.
Princeton, N.J: Princeton University Press, 2012.

[2] Hornung, Armin, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Burgard.
“OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees.” Autonomous Robots
34, no. 3 (April 2013): 189–206. https://doi.org/10.1007/s10514-012-9321-0.

 Motion Planning with RRT for Fixed-Wing UAV

1-57

https://doi.org/10.1007/s10514-012-9321-0

Transition from Low to High-Fidelity UAV Models in Three
Stages

This example shows how to continuously evolve your UAV plant model to keep in sync with the latest
information available. 

Background

An unmanned aerial vehicle (UAV) design cycle provides incrementally better access to UAV
characteristics as the design progresses. By increasing its fidelity, this information can be used to
continuously evolve a plant model through a Model Based Design approach.

Towards the end of the design cycle, there is enough information to develop a high-fidelity plant. To
accurately model the UAV, a high-fidelity model incorporates modeling all forces and moments, wind
and environmental effects and sensors in detail. However, this level of information may be unavailable
to a designer early in the design process. To build such a complex model, it can take several flight and
wind tunnel tests to create enough detailed aerodynamic coefficients to compute all forces and
moments that affect the UAV. These factors can potentially block guidance algorithm design until the
end of the design process, when a more realistic estimate of UAV dynamics is obtained.   

To concurrently design a guidance algorithm sooner, a UAV algorithm designer can start with a low-
fidelity model and evolve their plant model as and when additional data becomes available. 

Designing a guidance algorithm using only a low-fidelity model can also pose a risk. Without
controller or aerodynamic constraints, an optimistic guidance technique can fail for a real UAV with
slower aircraft dynamics. 

This example highlights an alternative approach. You progress from the low-fidelity Guidance Block to
a medium and then high-fidelity model by progressively adding layers of control and dynamics to the
simulation. In this process, the medium-fidelity model becomes a useful tool for leveraging limited
information about a plant model to tune and test guidance algorithms.

The medium-fidelity model is thus used to test a given path following an algorithm. Since the high-
fidelity model is unavailable until the end of the design process, the high-fidelity model is only used
later to validate our modelling approach by comparing step response and path following behavior. 

1 UAV Toolbox Examples

1-58

Open Example and Project Files

To access the example files, click Open Live Script or use the openExample function.

openExample('shared_uav_aeroblks/UAVFidelityExample')

Open the Simulink™ project provided in this example.

cd fidelityExample
openProject('fidelityExample.prj')

The project contains three versions of a UAV model, low-fidelity, medium-fidelity and high-fidelity with
steps to study their step response and path following behaviour.

Low-Fidelity Model

Assume your UAV has the following design specifications shown in the table below. The low-fidelity
variant provided in this model is tuned to achieve the desired response, but you can tune these gains
for your specific requirements. The low-fidelity plant uses the UAV Guidance Block which is a reduced
order model for a UAV. To run the low-fidelity variant, click the Simulate Plant shortcut under the
Low Fidelity group of the project toolstrip.

This shortcut sets the FidelityStage parameter to 1, configures the FidelityStepResponse model to
simulate the low-fidelity model, and outputs the step response. The step response is computed for
height, airspeed, and roll response.

Open the UAV Fixed Wing Guidance Model block in the FidelityStepResponse/FixedWingModel/
LowFidelity subsystem. In the Configuration tab, inspect the gains set for height, airspeed, and roll
response. This guidance block integrates the controller with the dynamics of the aircraft. The low-
fidelity variant gives a first estimate of how fast the UAV can realistically respond to help tune high-
level planners.

 Transition from Low to High-Fidelity UAV Models in Three Stages

1-59

Medium-Fidelity Model

As the UAV design progresses, the lift and drag coefficients become available. A motor for the aircraft
is selected by the user, which defines the thrust curves. To test the validity of the guidance algorithm
against this new information, the example adds this information to the plant model in this step.

To design a medium-fidelity model, the model needs only preliminary aerodynamic coefficients, thrust
curves, and response time specifications. To model a medium-fidelity UAV, you can use the Fixed-Wing
Point Mass Block. The block only requires lift, drag and thrust force inputs, which are much easier to
approximate at an early design stage than detailed forces and moments of an aircraft. To set up the
medium-fidelity variant, click the Setup Plant shortcut under the Medium Fidelity group of the
project toolstrip.

Examine the Vehicle Dynamics tab in the model under FidelityStepResponse/
FixedWingModel/Mid Fidelty/UAV Plant Dynamics/Vehicle Dynamics.

The medium-fidelity model represents the UAV as a point mass with the primary control variables being the
angle of attack and roll. This medium-fidelity plant model takes in roll, pitch, thrust as control inputs.
The point mass block assumes instantaneous dynamics of roll and angle of attack. This model uses a
transfer function to model roll lag based on our roll-response specification shared in the table within
the previous step.

The medium-fidelity aircraft controls pitch instead of angle of attack. Since the angle of attack is an
input to the point mass block, the plant model converts pitch to alpha using the following equation.

Θ = γa+α

Θ,γa and α represent pitch, flight path angle in the wind frame, and angle of attack respectively.

Unlike the low-fidelity model, the medium-fidelity model splits the autopilot from the plant dynamics.
The medium-fidelity plant needs an outer-loop controller for height-pitch and airspeed-throttle control
to be added. The predefined controllers provided are using standard PID-tuning loops to reach
satisfactory response without overshoot. To inspect the outer-loop controller, open the
Outer_Loop_Autopilot Simulink model.

Medium-Fidelity Step Response

The low-fidelity plant was tuned in the previous step by assuming that all response time specifications
are met by the UAV. To test this assumption, use the medium-fidelity plant. The study of the step

1 UAV Toolbox Examples

1-60

response of the improved plant is used to contrast the performance of the low-fidelity and medium-
fidelity variant. To simulate the medium-fidelity step response, click the Simulate Plant shortcut
under the Medium Fidelity group of the project toolstrip. The step response plots appear as figures.

Notice that the model meets the design criteria shown in the table below by achieving an air speed
settling time of 0.6 seconds and a height response of 4.1 seconds. However, the height response is
slower than the low-fidelity variant. This lag in response is expected due to the additional
aerodynamic constraints placed on the medium-fidelity plant.

Simulate Path Following Algorithm

With a more accurate response from the UAV medium-fidelity model, you can now test waypoint
follower or guidance algorithms to follow waypoints. For the guidance algorithm design, see the
"Tuning Waypoint Follower for Fixed-Wing UAV" example.

To simulate and visualize the medium-fidelity UAV path following the model, click the Simulate Path
Follower shortcut under the Medium Fidelity group of the project toolstrip.

Notice that the medium-fidelity UAV follows the desired path accurately.

 Transition from Low to High-Fidelity UAV Models in Three Stages

1-61

High-Fidelity Step Response

The medium-fidelity model was used to test a path follower design using simple aircraft parameters
available at an early design state. However, it is important to continue adding fidelity to capture UAV
control response to study more complex situations. For example, the use of more detailed
aerodynamics coefficients allows analysis of complex motions such as doublet maneuvers. Another
example is, adding actuator dynamics lets you study the subsequent effect on inner loop controllers
for attitude, which can cause destabilization. In this way, the high-fidelity plant allows refinement of
control system design. In this step, to study the change in response, we look at a high-fidelity plant
with these added dynamics.

The high-fidelity plant inputs all forces and moments to a 6-DOF block, adds on-board sensors, and
models actuator dynamics for the UAV. Unlike the mid-fidelity plant, the high-fidelity version does not
take attitude inputs directly. Instead, an inner loop controller is added to control attitude.
Additionally, a yaw compensation loop balances the non-zero sideslip. The model reuses the outer-loop
controller designed for the medium-fidelity model. To validate that the medium-fidelity model
provided useful intermediate information, use the response of the higher fidelity model.

1 UAV Toolbox Examples

1-62

To simulate and visualize the high-fidelity step response, click the Simulate Plant shortcut under the
High-Fidelity group of the project toolstrip. Notice that despite added complexity, the trajectory
matches well with the medium-fidelity model. Also, notice the design specifications are relatively the
same for the high-fidelity stage. This similarity shows that the medium-fidelity plant modelled UAV
dynamics accurately.

Simulate Path Following Algorithm for High-Fidelity

Towards the end of the design cycle, the high-fidelity model finally becomes available. To get the final
UAV path following characteristics, you can now test the guidance algorithm developed in previous
steps on the high-fidelity plant. Click the Simulate Path Follower shortcut under the High-
Fidelity group of the project toolstrip.

 Transition from Low to High-Fidelity UAV Models in Three Stages

1-63

Notice that the model obtains a similar response to the medium-fidelity model using the guidance and
outer-loop control parameters. This validates the guidance algorithm with a high-fidelity plant.

Conclusion

The medium-fidelity model accurately predicts the UAV dynamics making optimum use of limited
information available during design. The example designs the outer loop controller and tests a
waypoint follower without needing all the information in a high-fidelity plant model.

To model additional dynamics such as actuator lag, the medium-fidelity plant is flexible and can
continuously evolve alongside design. The example obtains results under zero-wind conditions. In the
presence of wind disturbances, the controller and path follower performance tracking might be
adversely affected. To augment the autopilot controller to compensate for wind effects, leverage the
atmospheric wind model in the high-fidelity plant model.

See Also
Blocks
Guidance Model | Fixed-Wing UAV Point Mass

Related Examples
• “Tuning Waypoint Follower for Fixed-Wing UAV” on page 1-37

1 UAV Toolbox Examples

1-64

UAV Package Delivery
This example shows through incremental design iterations how to implement a small multicopter
simulation to takeoff, fly, and land at a different location in a city environment.

Open the Project

To get started, open the example live script and access the supporting files by either clicking Open
Live Script in the documentation or using the openExample function.

openExample('uav/UAVPackageDeliveryExample');

Then, open the Simulink™ project file.

prj = openProject('uavPackageDelivery.prj');

Model Architecture and Conventions

The top model consists of the following subsystems and model references:

1 Ground Control Station: Used to control and monitor the aircraft while in-flight.
2 External Sensors - Lidar & Camera: Used to connect to previously-designed scenario or a

Photorealistic simulation environment. These produce Lidar readings from the environment as
the aircraft flies through it.

3 On Board Computer: Used to implement algorithms meant to run in an on-board computer
independent from the Autopilot.

4 Multirotor: Includes a low-fidelity and mid-fidelity multicopter mode, a flight controller
including its guidance logic.

The model's design data is contained in a Simulink™ data dictionary in the data folder
(uavPackageDeliveryDataDict.sldd). Additionally, the model uses “Variant Subsystems”
(Simulink) to manage different configurations of the model. Variables placed in the base workspace
configure these variants without the need to modifiy the data dictionary.

Following Example Steps

Use the Project Shortcuts to step through the example. Each shortcut sets up the required variables
for the project.

 UAV Package Delivery

1-65

1. Getting Started

Click the Getting Started project shortcut, which sets up the model for a four-waypoint mission
using a low-fidelity multirotor plant model. Run the uavPackageDelivery model, which shows the
multirotor takeoff, fly, and land in a 3-D plot.

The model uses UAV Path Manager block to determine which is the active waypoint throughout the
flight. The active waypoint is passed into the Guidance Mode Selector Stateflow™ chart to
generate the necessary inner loop control commands.

1 UAV Toolbox Examples

1-66

2. Connecting to a GCS

Once you are able to fly a basic mission, you are ready to integrate your simulation with a Ground
Station Software so you can better control the aircraft's mission. For this, you need to download and
install QGroundControl Ground Control Station software.

The model uses the UAV Toolbox™ mavlinkio to establish a connection between Simulink and
QGroundControl. The connection is implemented as a MATLAB® System Block located in
uavPackageDelivery/Ground Control Station/Get Flight Mission/QGC/MAVLink
Interface.

To test the connectivity between Simulink and QGroundControl follow these steps:

1 Click the Connecting to a GCS project shortcut.
2 Launch QGroundControl.
3 In QGroundControl, load the mission plan named shortMission.plan located in /utilities/

qgc.
4 Run the simulation.
5 When QGroundControl indicates that it is connected to the system, upload the mission.

Once the aircraft takes off, you should see the UAV fly its mission as sent by QGC as shown below.

 UAV Package Delivery

1-67

https://qgroundcontrol.com/

You can modify the mission by adding waypoints or moving those that are already in the mission.
Upload the mission and the aircraft should respond to these changes.

3. Setting a Cuboid Scenario

Now that aircraft's model can be flow from a ground control station, consider the environment the
aircraft flies in. For this example, a few city blocks are modelled in a cuboid scenario using the
uavScenario object. The scenario is based on the city block shown in the left figure below.

1 UAV Toolbox Examples

1-68

To safely fly the aircraft in this type of scenario, you need a sensor that provides information about
the environment such as a lidar sensor to the model. This example uses a
uavLidarPointCloudGenerator object added to the UAV scenario with a uavSensor object. The
lidar sensor model generates readings based on the pose of the sensor and the obstacles in the
environment.

Click the Setting a Cuboid Scenario shortcut and Run the model. As the model runs, a lidar point
cloud image is displayed as the aircraft flies through the cuboid environment:

 UAV Package Delivery

1-69

4. Obstacle Avoidance

To avoid obstacles in the environment, the model must use the available sensor data as the UAV flies
the mission in the environment. To modify the model configuration, click the Obstacle Avoidance
shortcut. A scope appears that shows the closest point to a buidling in the cuboid environment.

Run the model. As the model runs, the aircraft attempts to fly in a straight path between buildings to
a drop site and avoids obstacles along the way. Notice the change in distance to obstacles over time.

1 UAV Toolbox Examples

1-70

5. Photorealistic Simulation

Up to this point, the environment has been a simple cuboid scenario. To increase the fidelity of the
environment, click the Photorealistic Simulation shortcut, which places the aircraft in a more
realistic world to fly through. The PhotorealisticQuadrotor variant located at uavPackageDelivery/
photorealisticSimulationEngi/SimulationEnvironmentVariant becomes active. This
variant contains the necessary blocks to configure the simulation environment and the sensors
mounted on the aircraft:

Run the model. The aircraft is set up to fly the same mission from steps 1 and 2. Notice as the
aircraft flies the mission the lidar point clouds update and an image from the front-facing camera is
shown.

 UAV Package Delivery

1-71

6. Fly Full Mission in a Photorealistic Simulation Environment

Next, click the Fly full mission shortcut, which sets up the connectivity to QGroundControl from
step 2 for uploading the mission inside the photorealistic environment. Follow these steps to run the
simulation:

1 Launch QGroundControl.
2 In QGroundControl, load the mission plan named shortMission.plan located in /utilities/

qgc.
3 Run the Simulation.
4 When QGroundControl indicates that it is connected to a system, upload the mission.

As the aircraft starts to fly, you can modify the mission in QGroundControl by adding waypoints or
moving those that are already in the mission. Upload the mission and the aircraft should respond to
these changes. Throughout the flight you'll see the aircraft flying in the scenario.

1 UAV Toolbox Examples

1-72

7. Flying Obstacle Avoidance in a Photorealistic Simulation Environment

Next, the goal is to fly a mission by specifying a takeoff and landing point in QGroundControl and
using the obstacle avoidance to navigate around the obstacles along the path. Click the Fly full
Obstacle Avoidance shortcut and follow these steps to run the simulation:

1 Launch QGroundControl.
2 In QGroundControl, load the mission plan named oaMission.plan located in /utilities/

qgc.
3 Run the Simulation.
4 When QGroundControl indicates that it is connected to a system, upload the mission.

Throughout the flight, watch the aircraft try to follow the commanded path in QGroundControl, while
at the same time attempting to avoid colliding with the buildings in the environment.

 UAV Package Delivery

1-73

At some point during the flight, you will see the UAV pass through a narrow pass between two
buildings.

1 UAV Toolbox Examples

1-74

8. Adding a 6DOF Plant Model for Higher-Fidelity Simulation

As a final step, click the Adding a High Fidelity Plant shortcut, which activates the high-fidelity
variant of the UAV model located at uavPackageDelivery/MultirotorModel/Inner Loop and
Plant Model/High-FidelityModel. This variant contains an inner-loop controller and a high-
fidelity plant model.

Run the model. There are minor changes in behavior due to the high-fidelity model, but the UAV flies
the same mission.

When you are done exploring the models, close the project file.

 UAV Package Delivery

1-75

close(prj);

1 UAV Toolbox Examples

1-76

Automate Testing for UAV Package Delivery Example
This example shows how to edit requirements, link requirements to their implementation in a model,
and verify their functionality in the context of a UAV application. The components of the model and
requirements include guidance and control of a UAV implemented by the “UAV Package Delivery” on
page 1-65 example.

Introduction

The “UAV Package Delivery” on page 1-65 example shows through incremental design iterations how
to implement a small multicopter simulation to takeoff, fly, and land at a different location in a city
environment. In this example we go through the process of editing a small but representative
requirement set, linking these requirements to sections in the model that implment these
requirements, and finally validate these through a test suite.

Requirements Review

To load the required project and files, click Open Live Script or run the openExample function.

openExample('uav/AutomateTestingForUAVPackageDeliveryExample')

Simulink Requirements™ lets you author, analyze, and manage requirements within Simulink™. This
example contains twenty functional requirements defined for the Guidance and Control of a UAV
flight controller. Open the provided Simulink project and the requirement set. Alternatively, you can
also open the file from the Requirements tab of the Requirements Manager app in Simulink.

prj = openProject("verifications/AutomatedTestsPackageDelivery.prj");
open('uavPackageDeliveryReqs.slreqx')

Requirements are separated into Guidance and Control sections. These requirements map directly to
sections in the multirotor model of the UAV Package Delivery example. Look through the list of
requirements, and click items to see and edit details on the right.

 Automate Testing for UAV Package Delivery Example

1-77

Linking Requirements to Implementation

Simulink Requirements enables you to link each individual requirement to the Simulink model
component that implements such requirement. To link requirements, first open the multirotor model.

open_system('MultirotorModel')

Enter the requirements perspective by clicking in the Perspectives control in the lower-right corner
of the model canvas.

Select the Requirements perspective.

1 UAV Toolbox Examples

1-78

In the requirements perspective, navigate to the Guidance Logic and inspect some if the the
guidance requirements are implemented. Requiremenst #5 and #6 are labeled in gray. The heading
and yaw command limits are implemented by the Waypoint Follower block.

open_system('MultirotorModel/Guidance Logic/Full Guidance Logic/Guidance Stateflow/Guidance Mode Selector/GuidanceLogic.WP')

Alternatively, you can navigate to the implementation of each requirement from the Links section of
each requirement in the requirement editor. Open the Requirement Editor. Select a functional
requirement and navigate to the Links >> Implemented by section in the Details tab on the right.

open('uavPackageDeliveryReqs.slreqx')

 Automate Testing for UAV Package Delivery Example

1-79

Click on Requirement #19 (Index 1.2.1.4). In the Details tab under Links, click the theta_limit link
to go to where the requirement is implemented in the multirotor model. The theta Limit block
implements this requirement.

1 UAV Toolbox Examples

1-80

Automate Testing

To ensure each of the requirements is met, this example includes three automatic tests to run on the
model. To see how these tests are implemented, open the test file in the Test Manager. You should
see two test suites, GuidanceLogicSuite and ControlSystemSuite.

uiopen('MultirotorModelTest.mldatx',1)

 Automate Testing for UAV Package Delivery Example

1-81

Testing the Guidance Logic

The Test Guidance State Transitions test makes use of a “Manage Test Harnesses” (Simulink Test)
for the model. To see the test harness, click the Test Guidance State Transitions test and expand
the System Under Test section of the test. Click on the arrow button to open the model:

The harness contains a Signal Editor with a pre-defined set of inputs to test all the phases of the
guidance logic state machine, from takeoff to land.

1 UAV Toolbox Examples

1-82

To validate the requirements are met during simuliation, the test implements six “Assess Temporal
Logic by Using Temporal Assessments” (Simulink Test) and links each of these with a requirement.

Testing the Control System

The Control System test suite consists of two tests. One focused on testing all the command limits of
the controller and the other asessing the controller performance. Both tests make use of a Simulink
test harness configured to drive the control system under some reasonable inputs and evaluate the
response.

 Automate Testing for UAV Package Delivery Example

1-83

The Test Control System Cmd Limits test implements ten “Assess Temporal Logic by Using
Temporal Assessments” (Simulink Test) assesments to make sure all commands in the control system
are properly saturated to values established by the requirements. These assesments are linked to the
corresponding requirements.

The Test Control System Performance test uses a “Compare Model Output to Baseline Data”
(Simulink Test) test to asses whether the control system is within the bounds or diverges from a
prerecorded baseline.

1 UAV Toolbox Examples

1-84

Running All Tests

To run both test suites, click Run on the Test Manager toolstrip. Once the tests run, you will see the
results status in the Results and Artifacts tree.

Validating Requirements

As a final step, open the Requirement Editor and enable the Implementation State and
Validation Status columns from the toolstrip. The column colors indicate whether each requirement
has been implemented and verified by a test.

 Automate Testing for UAV Package Delivery Example

1-85

1 UAV Toolbox Examples

1-86

UAV Scenario Tutorial
Create a scenario to simulate unmanned aerial vehicle (UAV) flights between a set of buildings. The
example demonstrates updating the UAV pose in open-loop simulations. Use the UAV scenario to
visualize the UAV flight and generate simulated point cloud sensor readings.

Introduction

To test autonomous algorithms, a UAV scenario enables you to generate test cases and generate
sensor data from the environment. You can specify obstacles in the workspace, provide trajectories of
UAVs in global coordinates, and convert data between coordinate frames. The UAV scenario enables
you to visualize this information in the reference frame of the environment.

Create Scenario with Polygon Building Meshes

A uavScenario object is model consisting of a set of static obstacles and movable objects called
platforms. Use uavPlatform objects to model fixed-wing UAVs, multirotors, and other objects within
the scenario. This example builds a scenario consisting of a ground plane and 11 buildings as by
extruded polygons. The polygon data for the buildings is loaded and used to add polygon meshes.

% Create the UAV scenario.
scene = uavScenario("UpdateRate",2,"ReferenceLocation",[75 -46 0]);

% Add a ground plane.
color.Gray = 0.651*ones(1,3);
color.Green = [0.3922 0.8314 0.0745];
color.Red = [1 0 0];
addMesh(scene,"polygon",{[-250 -150; 200 -150; 200 180; -250 180],[-4 0]},color.Gray)

% Load building polygons.
load("buildingData.mat");

% Add sets of polygons as extruded meshes with varying heights from 10-30.
addMesh(scene,"polygon",{buildingData{1}(1:4,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{2}(2:5,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{3}(2:10,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{4}(2:9,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{5}(1:end-1,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{6}(1:end-1,:),[0 15]},color.Green)
addMesh(scene,"polygon",{buildingData{7}(1:end-1,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{8}(2:end-1,:),[0 10]},color.Green)
addMesh(scene,"polygon",{buildingData{9}(1:end-1,:),[0 15]},color.Green)
addMesh(scene,"polygon",{buildingData{10}(1:end-1,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{11}(1:end-2,:),[0 30]},color.Green)

% Show the scenario.
show3D(scene);
xlim([-250 200])
ylim([-150 180])
zlim([0 50])

 UAV Scenario Tutorial

1-87

Define UAV Platform and Mount Sensor

You can define a uavPlatform in the scenario as a carrier of your sensor models and drive them
through the scenario to collect simulated sensor data. You can associate the platform with various
meshes, such as fixedwing, quadrotor, and cuboid meshes. You can define a custom mesh
defined ones represented by vertices and faces. Specify the reference frame for describing the motion
of your platform.

Load flight data into the workspace and create a quadrotor platform using an NED reference frame.
Specify the initial position and orientation based on loaded flight log data. The configuration of the
UAV body frame orients the x-axis as forward-positive, the y-axis as right-positive, and the z-axis
downward-positive.

load("flightData.mat")

% Set up platform
plat = uavPlatform("UAV",scene,"ReferenceFrame","NED", ...
 "InitialPosition",position(:,:,1),"InitialOrientation",eul2quat(orientation(:,:,1)));

% Set up platform mesh. Add a rotation to orient the mesh to the UAV body frame.
updateMesh(plat,"quadrotor",{10},color.Red,[0 0 0],eul2quat([0 0 pi]))

You can choose to mount different sensors, such as the insSensor, gpsSensor, or
uavLidarPointCloudGenerator System objects to your UAV. Mount a lidar point cloud generator
and a uavSensor object that contains the lidar sensor model. Specify a mounting location of the
sensor that is relative to the UAV body frame.

1 UAV Toolbox Examples

1-88

lidarmodel = uavLidarPointCloudGenerator("AzimuthResolution",0.3324099,...
 "ElevationLimits",[-20 20],"ElevationResolution",1.25,...
 "MaxRange",90,"UpdateRate",2,"HasOrganizedOutput",true);

lidar = uavSensor("Lidar",plat,lidarmodel,"MountingLocation",[0,0,-1]);

Fly the UAV Platform Along Pre-Defined Trajectory and Collect Point Cloud Sensor Readings

Move the UAV along a pre-defined trajectory, and collect the lidar sensor readings along the way. This
data could be used to test lidar-based mapping and localization algorithms.

Preallocate the traj and scatterPlot line plots and then specify the plot-specific data sources.
During the simulation of the uavScenario, use the provided plotFrames output from the scene as
the parent axes to visualize your sensor data in the correct coordinate frames.

Visualize the scene.

[ax,plotFrames] = show3D(scene);

Update plot view for better visibility.

xlim([-250 200])
ylim([-150 180])
zlim([0 50])
view([-110 30])
axis equal
hold on

Create a line plot for the trajectory. First create the plot with plot3, then manually modify the data
source properties of the plot. This improves performance of the plotting.

traj = plot3(nan,nan,nan,"Color",[1 1 1],"LineWidth",2);
traj.XDataSource = "position(:,2,1:idx+1)";
traj.YDataSource = "position(:,1,1:idx+1)";
traj.ZDataSource = "-position(:,3,1:idx+1)";

Create a scatter plot for the point cloud. Update the data source properties again.

colormap("jet")
pt = pointCloud(nan(1,1,3));
scatterplot = scatter3(nan,nan,nan,1,[0.3020 0.7451 0.9333],...
 "Parent",plotFrames.UAV.Lidar);
scatterplot.XDataSource = "reshape(pt.Location(:,:,1),[],1)";
scatterplot.YDataSource = "reshape(pt.Location(:,:,2),[],1)";
scatterplot.ZDataSource = "reshape(pt.Location(:,:,3),[],1)";
scatterplot.CDataSource = "reshape(pt.Location(:,:,3),[],1) - min(reshape(pt.Location(:,:,3),[],1))";

Set up the simulation. Then, iterate through the positions and show the scene each time the lidar
sensor updates. Advance the scene, move the UAV platform, and update the sensors.

setup(scene)
for idx = 0:size(position, 3)-1
 [isupdated,lidarSampleTime, pt] = read(lidar);
 if isupdated
 % Use fast update to move platform visualization frames.
 show3D(scene,"Time",lidarSampleTime,"FastUpdate",true,"Parent",ax);
 % Refresh all plot data and visualize.
 refreshdata

 UAV Scenario Tutorial

1-89

 drawnow limitrate
 end
 % Advance scene simulation time and move platform.
 advance(scene);
 move(plat,[position(:,:,idx+1),zeros(1,6),eul2quat(orientation(:,:,idx+1)),zeros(1,3)])
 % Update all sensors in the scene.
 updateSensors(scene)
end
hold off

1 UAV Toolbox Examples

1-90

Simulate IMU Sensor Mounted on UAV
Create a sensor adaptor for an imuSensor from Navigation Toolbox™ and gather readings for a
simulated UAV flight scenario.

Create Sensor Adaptor

Use the createSensorAdaptorTemplate function to generate a template sensor and update it to
adapt an imuSensor object for usage in UAV scenario.

createCustomSensorTemplate

This example provivdes the adaptor class uavIMU, which can be viewed using the following
command.

edit uavIMU.m

Use Sensor Adaptor in UAV Scenario Simulation

Use the IMU sensor adaptor in a UAV Scenario simulation. First, create the scenario.

scenario = uavScenario("StopTime", 8, "UpdateRate", 100);

Create a UAV platform and specify the trajectory. Add a fixed-wing mesh for visualization.

plat = uavPlatform("UAV", scenario, "Trajectory", ...
 waypointTrajectory([0 0 0; 100 0 0; 100 100 0], "TimeOfArrival", [0 5 8], "AutoBank", true));
updateMesh(plat,"fixedwing", {10}, [1 0 0], eul2tform([0 0 pi]));

Attach the IMU sensor using the uavSensor object and specify the uavIMU as an input. Load
parameters for the sensor model.

imu = uavSensor("IMU", plat, uavIMU(imuSensor));

fn = fullfile(matlabroot,'toolbox','shared',...
 'positioning','positioningdata','generic.json');
loadparams(imu.SensorModel,fn,"GenericLowCost9Axis");

Visualize the scenario.

figure
ax = show3D(scenario);
xlim([-20 200]);
ylim([-20 200]);

Preallocate the simData structure and fields to store simulation data. The IMU sensor will output
acceleration and angular rates.

simData = struct;
simData.Time = duration.empty;
simData.AccelerationX = zeros(0,1);
simData.AccelerationY = zeros(0,1);
simData.AccelerationZ = zeros(0,1);
simData.AngularRatesX = zeros(0,1);
simData.AngularRatesY = zeros(0,1);
simData.AngularRatesZ = zeros(0,1);

Setup the scenario.

 Simulate IMU Sensor Mounted on UAV

1-91

setup(scenario);

Run the simulation using the advance function. Update the sensors and record the data.

updateCounter = 0;
while true
 % Advance scenario.
 isRunning = advance(scenario);
 updateCounter = updateCounter + 1;
 % Update sensors and read IMU data.
 updateSensors(scenario);
 [isUpdated, t, acc, gyro] = read(imu);
 % Store data in structure.
 simData.Time = [simData.Time; seconds(t)];
 simData.AccelerationX = [simData.AccelerationX; acc(1)];
 simData.AccelerationY = [simData.AccelerationY; acc(2)];
 simData.AccelerationZ = [simData.AccelerationZ; acc(3)];
 simData.AngularRatesX = [simData.AngularRatesX; gyro(1)];
 simData.AngularRatesY = [simData.AngularRatesY; gyro(2)];
 simData.AngularRatesZ = [simData.AngularRatesZ; gyro(3)];

 % Update visualization every 10 updates.
 if updateCounter > 10
 show3D(scenario, "FastUpdate", true, "Parent", ax);
 updateCounter = 0;
 drawnow limitrate
 end
 % Exit loop when scenario is finished.
 if ~isRunning
 break;
 end
end

1 UAV Toolbox Examples

1-92

Visualize the simulated IMU readings.

simTable = table2timetable(struct2table(simData));
figure
stackedplot(simTable, ["AccelerationX", "AccelerationY", "AccelerationZ", ...
 "AngularRatesX", "AngularRatesY", "AngularRatesZ"], ...
 "DisplayLabels", ["AccX (m/s^2)", "AccY (m/s^2)", "AccZ (m/s^2)", ...
 "AngularRateX (rad/s)", "AngularRateY (rad/s)", "AngularRateZ (rad/s)"]);

 Simulate IMU Sensor Mounted on UAV

1-93

1 UAV Toolbox Examples

1-94

Simulate Radar Sensor Mounted On UAV
The radar sensor enables a UAV to detect other vehicles in the airspace, so that the UAV can predict
other vehicle motion and make decisions to ensure clearance from other vehicles. This example
shows how to simulate a radar sensor mounted on a UAV using the uavScenario and
radarDataGenerator objects. During the scenario simulation, the radarDataGenerator object
generates flight tracks of another vehicle in the scenario. The ego vehicle can utilize such track
information to decide whether a collision is about to happen and decide whether a flight plan change
is required.

Creating UAV Scenario with Custom Radar Sensor

The testing scenario consists of two UAVs. The fixed-wing UAV is the target vehicle and the multirotor
UAV is tracking the fixed-wing UAV using a mounted radar sensor.

% Use fixed random seed for simulation repeatablity.
rng(0)

% Create a scenario that runs for 10 seconds.
s = uavScenario("StopTime",10,"HistoryBufferSize",200);

% Create a fixed-wing target that moves from [30 0 0] to [20 10 0].
target = uavPlatform("Target",s,"Trajectory",waypointTrajectory([30 0 0; 20 10 0],"TimeOfArrival",[0 10]));
updateMesh(target,"fixedwing", {1}, [1 0 0], eul2tform([0 0 pi]));

% Create a quadrotor that moves from [0 0 0] to [10 10 0].
egoMultirotor = uavPlatform("EgoVehicle",s,"Trajectory",waypointTrajectory([0 0 0; 10 10 0],"TimeOfArrival",[0 10]));
updateMesh(egoMultirotor,"quadrotor",{1},[0 1 0],eul2tform([0 0 pi]));

% Mount a radar on the quadrotor.
radarSensor = radarDataGenerator("no scanning","SensorIndex",1,"UpdateRate",10,...
 "FieldOfView",[120 80],...
 "HasElevation", true,...
 "ElevationResolution", 3,...
 "AzimuthResolution", 1, ...
 "RangeResolution", 10, ... meters
 "RangeRateResolution",3,...
 "RangeLimits", [0 750],...
 "TargetReportFormat","Tracks",...
 "TrackCoordinates",'Scenario',...
 "HasINS", true,...
 "HasFalseAlarms",true,...
 "FalseAlarmRate",1e-5,...
 "HasRangeRate",true,...
 "FalseAlarmRate", 1e-7);

% Create the sensor. ExampleHelperUAVRadar inherits from the uav.SensorAdaptor class.
radar = uavSensor("Radar",egoMultirotor,ExampleHelperUAVRadar(radarSensor),"MountingAngles", [0 0 0]);

Preview the scenario using the show3D function.

[ax,plotFrames] = show3D(s);
xlim([-5,15]);
ylim([-5,35]);
hold on

 Simulate Radar Sensor Mounted On UAV

1-95

Simulate and Visualize Radar Detections

Setup the scenario, run the simulation, and check the detections.

% Add detection and sensor field of view to the plot.
trackSquare = plot3(plotFrames.NED,nan,nan,nan,"-");
radarDirection = hgtransform("Parent",plotFrames.EgoVehicle.Radar,"Matrix",eye(4));
coverageAngles = linspace(-radarSensor.FieldOfView(1)/360*pi, radarSensor.FieldOfView(1)/360*pi,128);
coveragePatch = patch([0 radarSensor.RangeLimits(2)*cos(coverageAngles) 0], ...
 [0 radarSensor.RangeLimits(2)*sin(coverageAngles) 0],...
 "blue","FaceAlpha",0.3,...
 "Parent",radarDirection);
hold(ax,"off");

% Start simulation.
setup(s);
while advance(s)
 % Update sensor readings and read data.
 updateSensors(s);

 % Plot updated radar FOV.
 egoPose = read(egoMultirotor);
 radarFOV = coverageConfig(radarSensor, egoPose(1:3),quaternion(egoPose(10:13)));
 radarDirection.Matrix = eul2tform([radarFOV.LookAngle(1)/180*pi 0 0]);

 % Obtain detections from the radar and visualize them.
 [isUpdated,time,confTracks,numTracks,config] = read(radar);
 if numTracks > 0

1 UAV Toolbox Examples

1-96

 trackSquare.XData = [trackSquare.XData,confTracks(1).State(1)];
 trackSquare.YData = [trackSquare.YData,confTracks(1).State(3)];
 trackSquare.ZData = [trackSquare.ZData,confTracks(1).State(5)];
 drawnow limitrate
 end

 show3D(s,"FastUpdate", true,"Parent",ax);
 pause(0.1);
end

The target UAV track is visualized during simulation. Using this track prediction, the ego vehicle can
now make decisions about whether a collision is about to happen. This enables you to implement
obstacle avoidance algorithms and test them with this scenario.

 Simulate Radar Sensor Mounted On UAV

1-97

Map Environment For Motion Planning Using UAV Lidar
This example demonstrates how to use a UAV, equipped with a lidar sensor, to map an environment in
a 3D occupancy map. That generated occupancy map can then be used to execute motion planning.
The UAV follows a specified trajectory through the environment. Knowledge of the UAV's position and
the point clouds obtained at corresponding locations is used to build a map of the environment. The
pose of the UAV is assumed to be completely known throughout the mapping flight; this is also known
as mapping with known poses. The generated map is used for motion planning. The goal of the
motion planning is to plan the path of a UAV in an apartment complex where it is used to drop off
packages, delivered at the gate, to a desired rooftop location within the complex.

The East-North-Up (ENU) coordinate system is used throughout this example.

Table of Contents
1 Create Scenario on page 1-0
2 Create Mapping Trajectory on page 1-0
3 Create UAV Platform on page 1-0
4 Simulate Mapping Flight And Map Building on page 1-0
5 Perform Motion Planning on page 1-0
6 View Planned Path on page 1-0

Create Scenario

Create a simple uavScenario to build a representation of a simple apartment complex scene. During
the scenario simulation, the scene will be used to create simulate lidar data points.

Specify the time and update rate of the simulation. In this case, the simulated flight takes 60 seconds
and the simulation is updated at 2 Hz.

close all
close all hidden

simTime = 60; % in seconds
updateRate = 2; % in Hz
scene = uavScenario("UpdateRate",updateRate,"StopTime",simTime);

Add static meshes to the scenario to represent different buildings in the environment. We define each
building with a rectangular footprint and varying height. All the coordinates are in meters.

% Floor
addMesh(scene, "Polygon",{[0 0;80 0;80 80;40 80;40 40;0 40],[-1 0]},[0.3 0.3 0.3]);

% Features
addMesh(scene, "Polygon",{[10 0;30 0;30 20;10 20],[0 40]},[0.4660 0.6740 0.1880]); % Building 1
addMesh(scene, "Polygon",{[45 0;80 0;80 30;45 30],[0 60]},[0.9290 0.6980 0.1250]); % Building 2
addMesh(scene, "Polygon",{[0 35;10 35;10 40;0 40],[0 5]},[0 0.5 0]); % Generator Room
addMesh(scene, "Polygon",{[50 40;80 40;80 70;50 70],[0 5]},[0 0.4470 0.7410]); % Swimming Pool
addMesh(scene, "Polygon",{[0 0;2 0;2 4;0 4],[0 3]},[0.6350 0.0780 0.1840]); % Security Room

View the created scenario in 3D.

show3D(scene);
axis equal
view([-115 20])

1 UAV Toolbox Examples

1-98

Create Mapping Trajectory

Specify the trajectory that the UAV follows for mapping the environment. Specify waypoints and
assign orientation for each waypoint.

The complete pose vector for UAV is as follows

pose = [x y z a b c d]

x, y and z specify the position of the UAV with respect to the scenario's frame of reference. a, b, c
and d are the parts of the quaternion number that specifies the orientation of the UAV with respect to
the scenario's reference frame. a is the real part of the quaternion.

% Waypoints
x = -20:80;
y = -20:80;
z = 100*ones(1,length(x));

waypoints = [x' y' z'];

Specify the orientation as Euler angles (in radians) and convert the Euler angles to a quaternion:

orientation_eul = [0 0 0];
orientation_quat = quaternion(eul2quat(orientation_eul));
orientation_vec = repmat(orientation_quat,length(x),1);

Specify time vector

 Map Environment For Motion Planning Using UAV Lidar

1-99

 time = 0:(simTime/(length(x)-1)):simTime;

Generate trajectory from the specified waypoints and orientations using waypointTrajectory
system object. Specify the reference frame as 'ENU'.

trajectory = waypointTrajectory("Waypoints",waypoints,"Orientation",orientation_vec, ...
 "SampleRate",updateRate,"ReferenceFrame","ENU","TimeOfArrival",time);

Specify the initial pose of the UAV

initial_pose = [-20 -20 100 1 0 0 0];

Create UAV Platform

Create a uavPlatform object and update the scenario with a mesh of the UAV.

plat = uavPlatform("UAV",scene,"Trajectory",trajectory,"ReferenceFrame","ENU");
updateMesh(plat,"quadrotor",{4},[1 0 0],eye(4));

Introduce a 3D lidar into the scenario using the uavLidarPointCloudGenerator system object.
Specify relevant lidar sensor parameters. For example, the lidar in this example has a maximum
range of 200 meters, but you can adjust the parameters as needed.

lidarmodel = uavLidarPointCloudGenerator("AzimuthResolution",0.6, ...
 "ElevationLimits",[-90 -20],"ElevationResolution",2.5, ...
 "MaxRange",200,"UpdateRate",2,"HasOrganizedOutput",true);

lidar = uavSensor("Lidar",plat,lidarmodel,"MountingLocation",[0 0 -1],"MountingAngles",[0 0 0]);

Simulate Mapping Flight And Map Building

[ax,plotFrames] = show3D(scene);
xlim([-15 80]);
ylim([-15 80]);
zlim([0 80]);
view([-115 20]);
axis equal
hold on

colormap('jet');
ptc = pointCloud(nan(1,1,3));
scatterplot = scatter3(nan,nan,nan,1,[0.3020 0.7451 0.9333],...
 "Parent",plotFrames.UAV.Lidar);
scatterplot.XDataSource = "reshape(ptc.Location(:,:,1), [], 1)";
scatterplot.YDataSource = "reshape(ptc.Location(:,:,2), [], 1)";
scatterplot.ZDataSource = "reshape(ptc.Location(:,:,3), [], 1)";
scatterplot.CDataSource = "reshape(ptc.Location(:,:,3), [], 1) - min(reshape(ptc.Location(:,:,3), [], 1))";
hold off;

lidarSampleTime = [];
pt = cell(1,((updateRate*simTime) +1));
ptOut = cell(1,((updateRate*simTime) +1));

Create an occupancy map for a more efficient way to store the point cloud data. Use a minimum
resolution of 1 cell per meter.

map3D = occupancyMap3D(1);

1 UAV Toolbox Examples

1-100

Simulate the mapping flight in the scenario. Store lidar sensor readings for each simulation step in a
cell array after removing invalid points. Insert point clouds into the map using the function. Ensure
that the pose vector accounts for sensor offset.

setup(scene);

ptIdx = 0;
while scene.IsRunning
 ptIdx = ptIdx + 1;
 % Read the simulated lidar data from the scenario
 [isUpdated,lidarSampleTime,pt{ptIdx}] = read(lidar);

 if isUpdated
 % Get Lidar sensor's pose relative to ENU reference frame.
 sensorPose = getTransform(scene.TransformTree, "ENU","UAV/Lidar",lidarSampleTime);
 % Process the simulated Lidar pointcloud.
 ptc = pt{ptIdx};
 ptOut{ptIdx} = removeInvalidPoints(pt{ptIdx});
 % Construct the occupancy map using Lidar readings.
 insertPointCloud(map3D,[sensorPose(1:3,4)' tform2quat(sensorPose)],ptOut{ptIdx},500);

 figure(1)
 show3D(scene,"Time",lidarSampleTime,"FastUpdate",true,"Parent",ax);
 xlim([-15 80]);
 ylim([-15 80]);
 zlim([0 110]);
 view([-110 20]);

 refreshdata
 drawnow limitrate
 end

 % Show map building real time
 figure(2)
 show(map3D);
 view([-115 20]);
 axis equal

 advance(scene);
 updateSensors(scene);

end

 Map Environment For Motion Planning Using UAV Lidar

1-101

1 UAV Toolbox Examples

1-102

Perform Motion Planning

assigns probability observational value of 0.4 for unoccupied cells and 0.7 for occupied cells. Specify
the same as the thresholds for the occupancy map.

map3D.FreeThreshold = 0.4;
map3D.OccupiedThreshold = 0.7;

Use as the state space object for validator as the state vector of the state space is same as the pose
vector.

ss = stateSpaceSE3([0 80;0 40;0 120;inf inf;inf inf;inf inf;inf inf]);
sv = validatorOccupancyMap3D(ss);
sv.Map = map3D;
sv.ValidationDistance = 0.1;

Use an optimal planner, RRT* is for planning. Planning continues even after goal is reached and
terminates only when iteration limit is reached.

planner = plannerRRTStar(ss,sv);
planner.MaxConnectionDistance = 20;
planner.ContinueAfterGoalReached = true;
planner.MaxIterations = 500;

Specify a custom goal function that determines that a path reaches the goal if the Euclidean distance
to the target is below a threshold of 1 meter.

 Map Environment For Motion Planning Using UAV Lidar

1-103

planner.GoalReachedFcn = @(~,x,y)(norm(x(1:3)-y(1:3))<1);
planner.GoalBias = 0.1;

Specify start and goal poses and plan the path.

start = [3 5 5 1 0 0 0];
goal = [60 10 65 1 0 0 0];

rng(1,"twister"); % For repeatable results
[pthObj,solnInfo] = plan(planner,start,goal);

View Planned Path

close all
close all hidden

show(map3D)
axis equal
view([-115 20])
hold on
scatter3(start(1,1),start(1,2),start(1,3),'g','filled') % draw start state
scatter3(goal(1,1),goal(1,2),goal(1,3),'r','filled') % draw goal state
plot3(pthObj.States(:,1),pthObj.States(:,2),pthObj.States(:,3),'r-','LineWidth',2) % draw path

1 UAV Toolbox Examples

1-104

Plan Minimum Snap Trajectory for Quadrotor
This example shows how to plan a minimum snap trajectory (minimum control effort) for a multirotor
unmanned aerial vehicle (UAV) from a start pose to a goal pose on a 3D map by using the optimized
rapidly exploring random tree (RRT*) path planner.

In this example, you set up a 3D map, provide a start pose and goal pose, plan a path with RRT* using
3D straight line connections, and fit a minimum snap trajectory through the obtained waypoints.

Initial Setup

Configure the random number generator for repeatable result.

rng(100,"twister")

Load Map

Load the 3D occupancy map uavMapCityBlock.mat, which contains a set of pregenerated
obstacles, into the workspace. The occupancy map is in an east-north-up (ENU) frame.

mapData = load("uavMapCityBlock.mat");
omap = mapData.omap;

% Consider unknown spaces to be unoccupied
omap.FreeThreshold = omap.OccupiedThreshold;
show(omap)

Set Start Pose and Goal Pose

Using the map for reference, select an unoccupied start pose and goal pose for the trajectory.

startPose = [12 22 25 0.7 0.2 0 0.1]; % [x y z qw qx qy qz]
goalPose = [150 180 35 0.3 0 0.1 0.6];

% Plot the start and goal poses
hold on
scatter3(startPose(1),startPose(2),startPose(3),100,".r")
scatter3(goalPose(1),goalPose(2),goalPose(3),100,".g")
view([-31 63])
legend("","Start Position","Goal Position")
hold off

 Plan Minimum Snap Trajectory for Quadrotor

1-105

Plan Path with RRT* Using SE(3) State Space

RRT* is a tree-based motion planner that builds a search tree incrementally from random samples of
a given state space. The tree eventually spans the search space and connects the start state and the
goal state. Connect the two states with straight line connections using a stateSpaceSE3 object. Use
the validatorOccupancyMap3D object for collision checking between the multirotor UAV and the
environment.

Define State Space Object

The stateSpaceSE3 object defines the state space as [x y z qw qx qy qz], where [x y z]
specifies the position of the UAV in meters and [qw qx qy qz] specifies the orientation as a
quaternion. Specify the position and orientation boundaries of the quadrotor as a 7-by-2 matrix. The
orientation boundaries are optional, and can be set to -Inf and Inf if they are not applicable.

ss = stateSpaceSE3([-20 220;
 -20 220;
 -10 100;
 inf inf;
 inf inf;
 inf inf;
 inf inf]);

Define State Validator Object

The validatorOccupancyMap3D object determines that a state is invalid if the xyz-location is
occupied on the map. A motion between two states is valid only if all intermediate states are valid,

1 UAV Toolbox Examples

1-106

which means the UAV does not pass through any occupied locations on the map. Create a
validatorOccupancyMap3D object by specifying the state space object and the inflated map. Then
set the validation distance, in meters, for interpolating between states.

sv = validatorOccupancyMap3D(ss,Map=omap);
sv.ValidationDistance = 0.1;

Set Up RRT* Path Planner

Create a plannerRRTStar object by specifying the state space and state validator as inputs. Set the
MaxConnectionDistance, GoalBias, MaxIterations, ContinueAfterGoalReached, and
MaxNumTreeNodes properties of the planner object to optimize the returned waypoints.

planner = plannerRRTStar(ss,sv);
planner.MaxConnectionDistance = 50;
planner.GoalBias = 0.8;
planner.MaxIterations = 1000;
planner.ContinueAfterGoalReached = true;
planner.MaxNumTreeNodes = 10000;

Execute Path Planning

Perform RRT* based path planning in 3D space to obtain waypoints. The planner finds a flight path
that is collision-free and suitable for the quadrotor. The solution info is helpful for tuning the planner.

[pthObj,solnInfo] = plan(planner,startPose,goalPose);

Visualize Path

Check if the RRT* planner has found a path. If the planner has found a path, plot the waypoints.
Otherwise, terminate the script.

if (~solnInfo.IsPathFound)
 disp("No Path Found by the RRT, terminating example")
 return
end

% Plot map, start pose, and goal pose
show(omap)
hold on
scatter3(startPose(1),startPose(2),startPose(3),100,".r")
scatter3(goalPose(1),goalPose(2),goalPose(3),100,".g")

% Plot path computed by path planner
plot3(pthObj.States(:,1),pthObj.States(:,2),pthObj.States(:,3),"-g")
view([-31 63])
legend("","Start Position","Goal Postion","Planned Path")
hold off

 Plan Minimum Snap Trajectory for Quadrotor

1-107

Generate Minimum Snap UAV Trajectory

The original planned path has some sharp corners while navigating toward the goal. Generate a
smooth trajectory by fitting the obtained waypoints to the minimum snap trajectory using the
minsnappolytraj function. For your initial estimate of the time required to reach each waypoint,
assume the UAV moves at a constant speed.

To tune the trajectory and flight time, specify the numSamples, TimeAllocation, and TimeWeight
arguments of the minsnappolytraj function.

waypoints = pthObj.States;
nWayPoints = pthObj.NumStates;

% Calculate the distance between waypoints
distance = zeros(1,nWayPoints);
for i = 2:nWayPoints
 distance(i) = norm(waypoints(i,1:3) - waypoints(i-1,1:3));
end

% Assume a UAV speed of 3 m/s and calculate time taken to reach each waypoint
UAVspeed = 3;
timepoints = cumsum(distance/UAVspeed);
nSamples = 100;

% Compute states along the trajectory
initialStates = minsnappolytraj(waypoints',timepoints,nSamples,MinSegmentTime=4,MaxSegmentTime=20,TimeAllocation=true,TimeWeight=100)';

1 UAV Toolbox Examples

1-108

Visualize Trajectory

Visualize the obtained minimum snap trajectory.

% Plot map, start pose, and goal pose
show(omap)
hold on
scatter3(startPose(1),startPose(2),startPose(3),30,".r")
scatter3(goalPose(1),goalPose(2),goalPose(3),30,".g")

% Plot the waypoints
plot3(pthObj.States(:,1),pthObj.States(:,2),pthObj.States(:,3),"-g")

% Plot the minimum snap trajectory
plot3(initialStates(:,1),initialStates(:,2),initialStates(:,3),"-y")
view([-31 63])
legend("","Start Position","Goal Postion","Planned Path","Initial Trajectory")
hold off

Generate Valid Minimum Snap Trajectory

Notice that the generated flight trajectory has some invalid states, which are not obstacle-free. You
must modify the waypoints so that the generated trajectory is obstacle-free. To avoid invalid states,
add intermediate waypoints on the segment between the pair of waypoints for which the trajectory is
invalid. Insert waypoints iteratively until the entire trajectory is valid.

% Check if the trajectory is valid
states = initialStates;

 Plan Minimum Snap Trajectory for Quadrotor

1-109

valid = all(isStateValid(sv,states));

while(~valid)
 % Check the validity of the states
 validity = isStateValid(sv,states);

 % Map the states to the corresponding waypoint segments
 segmentIndices = exampleHelperMapStatesToPathSegments(waypoints,states);

 % Get the segments for the invalid states
 % Use unique, because multiple states in the same segment might be invalid
 invalidSegments = unique(segmentIndices(~validity));

 % Add intermediate waypoints on the invalid segments
 for i = 1:size(invalidSegments)
 segment = invalidSegments(i);

 % Take the midpoint of the position to get the intermediate position
 midpoint(1:3) = (waypoints(segment,1:3) + waypoints(segment+1,1:3))/2;

 % Spherically interpolate the quaternions to get the intermediate quaternion
 midpoint(4:7) = slerp(quaternion(waypoints(segment,4:7)),quaternion(waypoints(segment+1,4:7)),.5).compact;
 waypoints = [waypoints(1:segment,:); midpoint; waypoints(segment+1:end,:)];

 end

 nWayPoints = size(waypoints,1);
 distance = zeros(1,nWayPoints);
 for i = 2:nWayPoints
 distance(i) = norm(waypoints(i,1:3) - waypoints(i-1,1:3));
 end

 % Calculate the time taken to reach each waypoint
 timepoints = cumsum(distance/UAVspeed);
 nSamples = 100;
 states = minsnappolytraj(waypoints',timepoints,nSamples,MinSegmentTime=2,MaxSegmentTime=20,TimeAllocation=true,TimeWeight=5000)';

 % Check if the new trajectory is valid
 valid = all(isStateValid(sv,states));

end

Visualize Final Valid Trajectory

Visualize the final valid minimum snap trajectory.

% Plot map, start and goal pose
show(omap)
hold on
scatter3(startPose(1),startPose(2),startPose(3),30,".r")
scatter3(goalPose(1),goalPose(2),goalPose(3),30,".g")

% Plot the waypoints
plot3(pthObj.States(:,1),pthObj.States(:,2),pthObj.States(:,3),"-g")

% Plot the initial trajectory
plot3(initialStates(:,1),initialStates(:,2),initialStates(:,3),"-y")

1 UAV Toolbox Examples

1-110

% Plot the final valid trajectory
plot3(states(:,1),states(:,2),states(:,3),"-c")
view([-31 63])
legend("","Start Position","Goal Postion","Planned Path","Initial Trajectory","Valid Trajectory")
hold off

 Plan Minimum Snap Trajectory for Quadrotor

1-111

Tune UAV Parameters Using MAVLink Parameter Protocol
This example shows how to use a MAVLink parameter protocol in MATLAB™ and communicate with
external ground control stations. A sample parameter protocol is provided for sending parameter
updates from a simulated unmanned aerial vehicle (UAV) to a ground control station using MAVLink
communication protocols. You set up the communication between the two MAVLink components, the
UAV and the ground control station. Then, you send and receive parameter updates to tune
parameter values for the UAV. Finally, if you use QGroundControl© as a ground control station, you
can get these parameter updates from QGroundControl and see them reflected in the program
window.

Parameter Protocol

MAVLink clients exchange information within the network using commonly defined data structures as
messages. MAVLink parameter protocol is used to exchange configuration settings between UAV and
ground control station (GCS). Parameter protocol follows a client-server pattern. For example, GCS
initiates a request in the form of messages and the UAV responds with data.

Set Up Common Dialect

MAVLink messages are defined in an XML file. Standard messages that are common to all systems
are defined in the "common.xml" file. Other vendor-specific messages are stored in separate XML
files. For this example, use the "common.xml" file to set up a common dialect between the MAVLink
clients.

dialect = mavlinkdialect("common.xml");

This dialect is used to create mavlinkio objects which can understand messages within the dialect.

Set Up UAV Connection

Create a mavlinkio object to represent a simulated UAV. Specify the SystemID, ComponentID,
AutoPilotType, and ComponentType parameters as name-value pairs. For this example, we use a
generic autopilot type, 'MAV_AUTOPILOT_GENERIC', with a quadrotor component type,
'MAV_TYPE_QUADROTOR'.

uavNode = mavlinkio(dialect,'SystemID',1,'ComponentID',1, ...
 'AutopilotType',"MAV_AUTOPILOT_GENERIC",'ComponentType',"MAV_TYPE_QUADROTOR");

The simulated UAV is listening on a UDP port for incoming messages. Connect to this UDP port using
the uavNode object.

uavPort = 14750;
connect(uavNode,"UDP",'LocalPort',uavPort);

Set Up GCS Connection

Create a simulated ground control station (GCS) that listens on a different UDP port.

gcsNode = mavlinkio(dialect);
gcsPort = 14560;
connect(gcsNode,"UDP", 'LocalPort', gcsPort);

1 UAV Toolbox Examples

1-112

Set Up Client and Subscriber

Setup a client interface for the simulated UAV to communicate with the ground control station. Get
the LocalClient information as a structure and specify the system and component ID info to the
mavlinkclient object.

clientStruct = uavNode.LocalClient;
uavClient = mavlinkclient(gcsNode,clientStruct.SystemID,clientStruct.ComponentID);

Create a mavlinksub object to receive messages and process those messages using a callback. This
subscriber receives messages on the 'PARAM_VALUE' topic and specifically looks for messages
matching the system and component ID of uavClient. A callback function is specified to display the
payload of each new message received.

paramValueSub = mavlinksub(gcsNode,uavClient,'PARAM_VALUE','BufferSize',10,...
 'NewMessageFcn', @(~,msg)disp(msg.Payload));

Parameter Operations

Now that you have setup the connections between the UAV and ground control station. You can now
query and update the simulated UAV configuration using operations defined in parameter protocol,
exampleHelperMAVParamProtocol. There are 4 GCS operations that describe the workflow of
parameter protocol. Each message type listed has a brief description what the message executes
based on the specified parameter protocol.

1 PARAM_REQUET_LIST: Requests all parameters from the recipients. All values are broadcasted
using PARAM_VALUE messages.

2 PARAM_REQUEST_READ: Requests a single parameter. The specified parameter value is
broadcasted using a PARAM_VALUE message.

3 PARAM_SET: Commands to set the value of the specific parameter. After setting up the value, the
current value is broadcasted using a PARAM_VALUE message.

4 PARAM_VALUE: Broadcasts the current value of a parameter in response to the above requests
(PARAM_REQUEST_LIST, PARAM_REQUEST_READ or PARAM_SET).

paramProtocol = exampleHelperMAVParamProtocol(uavNode);

This parameter protocol has three parameter values: 'MAX_ROLL_RATE', 'MAX_PITCH_RATE', and
'MAX_YAW_RATE'. These values represent the maximum rate for roll, pitch, and yaw for the UAV in
degrees per second. In real UAV systems, these rates can be tuned to adjust performance for more or
less acrobatic control.

Read All Parameters

To read all parameters from a UAV system, send a "PARAM_REQUEST_LIST" message from gcsNode
to uavNode.

1 GCS node sends a message whose topic is "PARAM_REQUEST_LIST" to the UAV node specifying
the target system and component using uavClient as defined above.

2 UAV node sends out all parameters individually in the form of "PARAM_VALUE" messages, since
we have a subscriber on the GCS node which is subscribed to the topic 'PARAM_VALUE',
message payload is being displayed right away.

msg = createmsg(dialect,"PARAM_REQUEST_LIST");

 Tune UAV Parameters Using MAVLink Parameter Protocol

1-113

Assign values for the system and component ID into the message, use (:)= indexing to make sure
the assignment doesn't change the struct field data type.

msg.Payload.target_system(:) = uavNode.LocalClient.SystemID;
msg.Payload.target_component(:) = uavNode.LocalClient.ComponentID;

Send the parameter request to the UAV, which is listening on a port at local host IP address
'127.0.0.1'. Pause to allow the message to be processed. The parameter list is displayed in the
command window.

sendudpmsg(gcsNode,msg,"127.0.0.1",uavPort)
pause(1);

 param_value: 90
 param_count: 3
 param_index: 0
 param_id: 'MAX_ROLL_RATE '
 param_type: 9

 param_value: 90
 param_count: 3
 param_index: 1
 param_id: 'MAX_YAW_RATE '
 param_type: 9

 param_value: 90
 param_count: 3
 param_index: 2
 param_id: 'MAX_PITCH_RATE '
 param_type: 9

Read Single Parameter

Read a single parameter by sending a "PARAM_REQUEST_READ" message from the GCS node to the
UAV node.Send a message on the "PARAM_REQUEST_READ" topic to the UAVnode. Specify the
parameter index of 0, which refers to the 'MAX_ROLL_RATE' parameter. This index value queries the
first parameter value.

The UAV sends the updated parameter as a "PARAM_VALUE" message back to the GCS node. Because
we setup a subscriber to the "PARAM_VALUE" on the GCS node, the message payload is displayed to
the command window.

msg = createmsg(gcsNode.Dialect,"PARAM_REQUEST_READ");
msg.Payload.param_index(:) = 0;
msg.Payload.target_system(:) = uavNode.LocalClient.SystemID;
msg.Payload.target_component(:) = uavNode.LocalClient.ComponentID;

sendudpmsg(gcsNode,msg,"127.0.0.1",uavPort);
pause(1);

 param_value: 90
 param_count: 3
 param_index: 0
 param_id: 'MAX_ROLL_RATE '
 param_type: 9

1 UAV Toolbox Examples

1-114

Write Parameters

To write a parameter, send a "PARAM_SET" message from GCS node to UAV node. Specify the ID,
type, and value of the message and send using the gcsNode object. The UAV sends the updated
parameter value back and the GCS subscriber displays the message payload. This message updates
the maximum yaw rate of the UAV by reducing it to 45 degrees per second.

msg = createmsg(gcsNode.Dialect,"PARAM_SET");
msg.Payload.param_id(1:12) = "MAX_YAW_RATE";
msg.Payload.param_type(:) = 9;
msg.Payload.param_value(:) = 45;
msg.Payload.target_system(:) = uavNode.LocalClient.SystemID;
msg.Payload.target_component(:) = uavNode.LocalClient.ComponentID;

sendudpmsg(gcsNode,msg,"127.0.0.1", uavPort);
pause(1);

 param_value: 45
 param_count: 3
 param_index: 2
 param_id: 'MAX_YAW_RATE '
 param_type: 9

Working with QGroundControl

QGroundControl© is an app that is used to perform flight control and mission planning for any
MAVLink-enabled UAV. You can use QGroundControl as a GCS to demonstrate how to access
parameters of our simulated UAV:

1 Download and launch QGroundControl. Define qgcPort number as 14550, which is the default
UDP port for the QGroundControl app.

2 Create a heartbeat message.
3 Send heartbeat message from UAV node to QGroundControl using the MATLAB timer object. By

default, the timer object executes the TimerFcn every 1 second. The TimerFcn is a
sendudpmsg call that sends the heartbeat message.

4 Once QGroundControl receives the heartbeat from the simulated UAV, QGroundControl creates a
Parameter panel widget for the user to read and update UAV parameters

qgcPort = 14550;
heartbeat = createmsg(dialect,"HEARTBEAT");
heartbeat.Payload.type(:) = enum2num(dialect,'MAV_TYPE',uavNode.LocalClient.ComponentType);
heartbeat.Payload.autopilot(:) = enum2num(dialect,'MAV_AUTOPILOT',uavNode.LocalClient.AutopilotType);
heartbeat.Payload.system_status(:) = enum2num(dialect,'MAV_STATE',"MAV_STATE_STANDBY");

heartbeatTimer = timer;
heartbeatTimer.ExecutionMode = 'fixedRate';
heartbeatTimer.TimerFcn = @(~,~)sendudpmsg(uavNode,heartbeat,'127.0.0.1',qgcPort);
start(heartbeatTimer);

While the timer runs, QGroundControl shows it has received the heartbeast message and is
connected to a UAV. In the Vehicle Setup tab, click Other > Misc to see the parameter values set
are reflected in the app.

 Tune UAV Parameters Using MAVLink Parameter Protocol

1-115

Note: Because we use a generic autopilot type, "MAV_AUTOPILOT_GENERIC", QGroundControl does
not recognize the connection as a known autopilot type. This does not affect the connection and the
parameter values should still update as shown.

Close MAVLink connections

After experimenting with the QGroundControl parameter widget, stop the heartbeatTimer to stop
sending any more heartbeat messages. Delete the heartbeatTimer and the paramProtocol
objects. Finally, disconnect the UAV and GCS nodes to clean up the communication between systems.

stop(heartbeatTimer);
delete(heartbeatTimer);
delete(paramProtocol);

disconnect(uavNode);
disconnect(gcsNode);

1 UAV Toolbox Examples

1-116

Exchange Data for MAVLink Microservices like Mission Protocol
and Parameter Protocol Using Simulink

This example shows how to implement MAVLink microservices like Mission protocol and Parameter
protocol using the MAVLink Serializer and MAVLink Deserializer blocks in Simulink®.

This example uses:

• MATLAB®
• Simulink®
• UAV Toolbox™
• Stateflow™
• Instrument Control Toolbox™
• DSP System Toolbox™

The Mission protocol microservice in MAVLink allows a Ground Control Station (GCS) to
communicate with a drone to send and receive mission information needed to execute a mission. The
Mission protocol microservice allows you to:

• Upload a mission from the GCS to the drone
• Download a mission from the drone
• Set the current mission item

The Parameter protocol microservice in MAVLink allows you to exchange parameters representing
important configuration information between the drone and the GCS. The parameters are
represented as key-value pairs.

This example explains how to:

• Upload a mission consisting of 10 waypoints from the GCS to a drone emulated in Simulink. Use
QGroundControl (QGC) as the GCS. If you do not have the QGC installed on the host computer,
download it from here.

• Read and write data to a list of 28 parameters from the QGC and the drone.

Design Model

To get started, follow these steps:

1. Open the exampleHelperMAVLinkMissionAndParamProtocol file in MATLAB and click Run. This
creates the workspace variables required to initialize the data in Simulink and upload the autopilot
parameters to the QGC.

2. Launch the example model in Simulink by clicking Open Model at the top of this page. You can
also use the following command to launch the model anytime after you clicked the Open Model
button once:

open_system('MissionAndParameterProtocolUsingMAVLink.slx');

 Exchange Data for MAVLink Microservices like Mission Protocol and Parameter Protocol Using Simulink

1-117

https://mavlink.io/en/services/mission.html
https://mavlink.io/en/services/parameter.html
https://mavlink.io/en/services/parameter.html
http://qgroundcontrol.com/
https://docs.qgroundcontrol.com/en/getting_started/download_and_install.html

The Simulink model consists of:

1. Model Setup: This area in the model consists of two subsystem blocks - Initialize Function and
Global Data Stores. These blocks are used to initialize the data that will be used in the model from
the signals generated in the base workspace.

2. Protocol Rx: This area in the model consists of the receive_udp subsystem block that is used to
receive the UDP data from QGC. The subsystem contains a Simulink function that reads the MAVLink
data over UDP from the QGC, at each simulation step. The received MAVLink data is passed to a
Stateflow chart for decoding and parsing.

1 UAV Toolbox Examples

1-118

3. Mission Protocol: This area in the model consists of two subsystem blocks that send mission
requests and mission acknowledgments to the QGC. These functions are called from the Stateflow
chart that implements the mission microservice.

4. Mission and Parameter Protocol: The Stateflow chart that implements the mission and
parameter logic in the model.

The received MAVLink data is deserialized in the process_udp Simulink function and then passed to
the Stateflow logic that performs four tasks:

a. ReceivingMission: This Stateflow subchart receives a mission from the QGC and decodes the
waypoints in the mission. It implements the protocol of Mission microservice that uploads a mission
from QGC to drone, as described in Upload a Mission to the Vehicle.

 Exchange Data for MAVLink Microservices like Mission Protocol and Parameter Protocol Using Simulink

1-119

https://mavlink.io/en/services/mission.html#uploading_mission

b. SendingParams: This Stateflow subchart uploads the parameters created in the base workspace to
the QGC by following the parameter protocol, as described in Read All Parameters.

1 UAV Toolbox Examples

1-120

https://mavlink.io/en/services/parameter.html#read_all

c. SendSingleParams: This Stateflow subchart defines how to send a single parameter from the drone
to the QGC, as described in Read Single Parameter.

d. WriteSingleParam: This Stateflow subchart defines how to update the parameter values from the
QGC and see them on the drone, as described in Write Parameters.

 Exchange Data for MAVLink Microservices like Mission Protocol and Parameter Protocol Using Simulink

1-121

https://mavlink.io/en/services/parameter.html#read_single
https://mavlink.io/en/services/parameter.html#write

5. Logic to read received waypoints and parameters: Stateflow implements the two protocols and
outputs the received waypoints and uploaded parameter values.

1 UAV Toolbox Examples

1-122

The next section explains how to upload a mission from the QGC to the drone.

Upload a Mission from QGC to Drone and Run the Simulink Model

1. Launch the QGC and navigate to the Plan View.

 Exchange Data for MAVLink Microservices like Mission Protocol and Parameter Protocol Using Simulink

1-123

2. A preplanned mission, MissionProtocol.plan, is available with this example. Click Open Model at
the top of this page to save the plan file to your computer. After you save the .plan file, launch QGC,
and click File > Open to upload the plan to the QGC.

1 UAV Toolbox Examples

1-124

After you upload the plan, the mission is visible in QGC.

 Exchange Data for MAVLink Microservices like Mission Protocol and Parameter Protocol Using Simulink

1-125

3. Run the Simulink model. The Simulink model sends HEARTBEAT message over MAVLink to QGC
and thus establish connection with QGC.

4. Click Upload at the top right of QGC interface to upload the mission from QGroundControl.

5. Observe that the latitude and longitude values from the first two waypoints of the uploaded mission
are being displayed in Simulink.

1 UAV Toolbox Examples

1-126

6. Change the waypoint1 and waypoint2 in the QGC by dragging the waypoints to a different location
in the plan. Upload the modified mission by clicking Upload Required.

7. Observe the modified Latitude/Longitude values for waypoint 1 and 2 in Simulink.

 Exchange Data for MAVLink Microservices like Mission Protocol and Parameter Protocol Using Simulink

1-127

Modify Parameters in QGC and Send Them to Simulink

When you run the exampleHelperMAVLinkMissionAndParamProtocol file in the MATLAB Command
Window, a workspace variable apParams is created, which is an array of 28 flight parameters.

When you run the Simulink model, it connects to the QGC, and the QGC reads the parameters from
Simulink.

The parameters can be visualized and modified in the QGC:

1. Navigate to the Vehicle Setup pane in the QGC. Select the Parameters tab.

2. In the Parameters tab, select Other to list all the parameters that the QGC read from Simulink.

1 UAV Toolbox Examples

1-128

3. The model displays the values for GDNC_TSTAR and GDNC_TURN_LEAD parameters. Click the
GDNC_TSTAR and GDNC_TURN_LEAD parameters and modify their corresponding values in the
QGC.

 Exchange Data for MAVLink Microservices like Mission Protocol and Parameter Protocol Using Simulink

1-129

4. The QGC writes the values of these modified parameters using the parameter protocol
microservice to Simulink. Observe the parameter values being modified in Simulink.

Other Things to try

The Stateflow charts explained in this example do not implement the following scenario:

• If the communication between the drone and the QGC breaks off at some point and reconnects,
the mission protocol upload should resume after the waypoint from which the drone had
transmitted data before disconnecting.

You can modify the Stateflow charts, so that even when the communication snaps, Stateflow
remembers the last waypoint transmitted.

1 UAV Toolbox Examples

1-130

Onboard Computer Path Planning Interface for PX4 SITL
Deployable on NVIDIA Jetson

This example demonstrates enabling and interfacing onboard computer path planning with PX4
Software-in-the-Loop (SITL).

Note: This example uses NVIDIA Jetson as the onboard computer.

In this example you:

• Enable onboard computer workflows with PX4 SITL.

• Implement a PX4 path planning interface in Simulink and deploy on NVIDIA Jetson.

• Establish MAVLink communication between the onboard computer and PX4 SITL.

• Run and complete a UAV mission with onboard computer assisted path planning.

The following diagram illustrates high level interface between multiple components used in this
example.

QGroundControl (QGC) is the ground control station software, which helps you to configure PX4
autopilot software. In this example, you use QGC to create, upload, and monitor a UAV mission. When
PX4 SITL is in mission mode, it sends the mission waypoints to the onboard computer (NVIDIA
Jetson), which is connected to the same network over MAVLink using PX4 path planning interface.
The onboard computer uses the Waypoint Follower block from UAV Toolbox to generate trajectory to
follow these waypoints. The updated trajectory waypoints output from the Waypoint Follower block
are sent back to the PX4 SITL over MAVLink using the PX4 path planning interface.

 Onboard Computer Path Planning Interface for PX4 SITL Deployable on NVIDIA Jetson

1-131

Prerequisites

• If you are new to Simulink, watch the Simulink Quick Start video.

• If you are new to PX4, refer to PX4 Autopilot User Guide to understand the PX4 flight stack for
UAVs.

This example uses:

• MATLAB®

• Simulink®

• UAV Toolbox™

• MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms

This example requires the following third-party software:

• PX4 flight stack for UAVs

• Cygwin Toolchain (For Windows Operating System)

• QGroundControl (QGC)

Install Required Applications

PX4 Source Code

For this example, use PX4 Autopilot Firmware v1.11.0.

Download PX4 Source Code from Github (For Ubuntu)

1. Open the bash terminal on Ubuntu 18.04.

2. Create a directory mypx4 in the home folder.

3. Go to the newly created px4 directory, and run the following commands one-by-one. Wait for each
command to execute before entering the next command.

• git clone https://github.com/PX4/Firmware.git Firmware

• cd Firmware

• git checkout v1.11.0

• git submodule update --init --recursive

4. Install the auxiliary packages required by running the ubuntu.sh script. Enter the following
command (while in the Firmware folder) in the terminal.

• bash ./Tools/setup/ubuntu.sh

5. Restart the computer or log off and log in again after the previous process is complete.

Download PX4 Source Code from Github (For Windows)

1 UAV Toolbox Examples

1-132

https://github.com/PX4/Firmware.git

1. The Cygwin toolchain is required to build the PX4 Firmware in Windows. Download version 0.8 of
the PX4 Cygwin Toolchain MSI Installer, compatible with PX4 Firmware v1.11.0, available here.

2. Install the PX4 Cygwin Toolchain MSI Installer. At the last step of the PX4 Toolchain Setup wizard.
select the option Clone PX4 repository and Start Simulation, and then click Finish. Doing so
clones the latest master PX4 Firmware.

3. Wait for the firmware to finish cloning. After the firmware is cloned, Simulation starts in jMAVSim.
Close the bash shell at this stage.

4. The PX4 firmware is cloned inside a folder named home, inside the Cygwin folder that you selected
during installation, for example, C:\px4_cygwin\home\.

5. Navigate to the installed Cygwin Toolchain directory on your PC. For example, C:\px4_cygwin.

6. Launch the batch file run-console.bat. Doing so opens the Cygwin console.

7. From the Cygwin console, navigate to the PX4 directory.

• cd home

8. Go to the newly created PX4 directory, and run the following commands. Wait for each command to
execute before entering the next command.

• cd Firmware

• git checkout v1.11.0

• git submodule update --init --recursive

QGroundControl

QGC provides full flight control and vehicle setup for PX4 powered vehicles. For QGC installation
instructions, see Download and install QGC. This example uses QGC v3.5.6.

Step 1: Configure and Run the Model

To get started, follow these steps:

 Onboard Computer Path Planning Interface for PX4 SITL Deployable on NVIDIA Jetson

1-133

1. Open the example model by executing this command at the MATLAB command prompt.

open_system('OnboardComputer_PathPlanning_PX4_SITL_NVIDIA_Jetson.slx')

This model implements the PX4 path planning interface using MAVLink Serializer and MAVLink
Deserializer blocks. Refer to PX4 Path Planning Interface for more details. The MAVLink messages
that are exchanged as part of this interface are shown in the following diagram.

2. In Target hardware resource > Board Parameters, enter the IP address of the NVIDIA Jetson
and your login credentials.

1 UAV Toolbox Examples

1-134

3. Find the IP address of the NVIDIA Jetson board connected. Ensure that the NVIDIA Jetson is
connected to the same network as your host PC. In the MATLAB Command Window, run the
exampleHelperUpdateStartupScriptforOBC script, attached to this example. The first input is
the path to the PX4 source downloaded and second input is the IP address of the NVIDIA Jetson
board. This script modifies the startup script of PX4 SITL to enable MAVLink connectivity to NVIDIA
Jetson.

exampleHelperUpdateStartupScriptforOBC('C:\px4_cygwin\home\','172.19.XX.XX');

4. Update the MAVLink Dialect path of the MAVLink Serializer and MAVLink Deserializer blocks in
the example to the MAVLink Dialect location in the PX4 source downloaded. A script is provided with
the example to automate this. Run the script exampleHelperUpdateMAVLinkDialectPath,
attached to this example to update the MAVLink Dialect path in the model. Input is the path to PX4
source downloaded.

exampleHelperUpdateMAVLinkDialectPath('C:\px4_cygwin\home\');

 Onboard Computer Path Planning Interface for PX4 SITL Deployable on NVIDIA Jetson

1-135

Note: The script provided with this example is specific to this example. If you are adding MAVLink
Serializer and Deserializer blocks to this model or creating a new model, this script does not work.
You can either update the script or update the block mask manually.

5. Open the block mask of the UDP Send block in the model. In the Remote IP address field, enter
IP address of the host PC on which you are running PX4 SITL. You can also achieve this by defining a
variable hostIP in the workspace. Ensure that the host PC and NVIDIA Jetson are connected to same
network.

hostIP ='172.19.XX.XX';

6. Run the example model in External mode by selecting the Hardware tab and then clicking
Monitor & Tune. Ensure that the simulation is started.

1 UAV Toolbox Examples

1-136

Note: If you get "Build failed because the build file name(s) exceed the Windows limit of 260
characters. Build from a working directory with a shorter path." error, change the path to a different
working directory and then run the example model in External mode.

Step 2: Launch PX4 SITL

Launch PX4 SITL with jMAVSim as the Flight Simulator.

On Windows, in Cygwin Console navigate to the PX4 directory and execute these commands:

On Ubuntu, navigate to the PX4 directory in terminal and run these commands:

• cd Firmware

• make px4_sitl jmavsim

PX4 SITL and jMAVSim launch.

Step 3: Open QGC and Enable PX4 Path Planning Interface

1. Launch the QGC Application and wait till it connects to the PX4 SITL.

2. Set the PX4 parameter COM_OBS_AVOID to enable the PX4 path planning interface. Navigate to
Parameters from the main menu and set the COM_OBS_AVOID parameter value to 1.

 Onboard Computer Path Planning Interface for PX4 SITL Deployable on NVIDIA Jetson

1-137

Step 4: Create, Upload, and Start Mission from QGC

You can create a mission or use the preplanned mission, example_mission.plan, which is available
with this example. Perform these steps:

1. Launch the QGC and navigate to the Plan View.

2. Create a mission or upload the preplanned mission, example_mission.plan.

• Create a mission: For information on creating a mission, see Plan View.

• To upload the preplanned mission, click Open Model at the top of this page and download the
plan file (example_mission.plan) to your computer. In the QGC, navigate and select
example_mission.plan file.

1 UAV Toolbox Examples

1-138

After you upload the plan, the mission is visible in QGC.

 Onboard Computer Path Planning Interface for PX4 SITL Deployable on NVIDIA Jetson

1-139

3. Click Upload in the QGC interface to upload the mission from QGroundControl.

4. Move to Fly View to see the uploaded mission.

1 UAV Toolbox Examples

1-140

5. Ensure that GPS fusion is completed and the GPS location is updated in QGC.

6. Start the mission from QGC

 Onboard Computer Path Planning Interface for PX4 SITL Deployable on NVIDIA Jetson

1-141

The drone takes off after the mission starts.

1 UAV Toolbox Examples

1-142

Observations After PX4 Autopilot Takes Off

In this example, the drone follows the mission. Through PX4 path planning interface, updated
waypoints are sent to the onboard computer. On the onboard computer, Waypoint Follower block from
UAV toolbox is used to generate trajectory from these waypoints. For more information, see Waypoint
Follower. The generated trajectory is sent back to the PX4 SITL as a series of waypoints, one at a
time.

Once the mission is complete, you can compare the planned path (yellow) and actual path (red)
followed by the UAV.

Troubleshooting

Description: The PX4 SITL is frozen a few minutes after the launch in Windows. QGC displays the
error message "Communication Lost". This issue occurs when PX4 SITL is frozen and connectivity
with QGC is lost a few minutes after launch.

 Onboard Computer Path Planning Interface for PX4 SITL Deployable on NVIDIA Jetson

1-143

Action

• Shut down PX4 SITL by entering shutdown command in PX4 SITL window.

• Restart PX4 SITL using the make px4_sitl jmavsim command.

• Continue with starting the mission once GPS fusion is achieved.

Description: "Obstacle Avoidance system failed, loitering" warning when starting a mission.

This warning occurs because the communication between NVIDIA Jetson and PX4 SITL is not
established.

Action: Ensure that host PC and NVIDIA Jetson are connected to same network. Try pinging NVIDIA
jetson from the host PC and vice versa.

Description: "Connection to mission computer lost" warning during a mission. This warning occurs
because the onboard computer is not accessible from PX4 SITL.

Action: Ensure that the monitor and tune simulation is running. If the simulation is stopped, run the
model in external mode again.

1 UAV Toolbox Examples

1-144

3D Simulation – User's Guide

2

Unreal Engine Simulation for Unmanned Aerial Vehicles
UAV Toolbox provides a co-simulation framework that models driving algorithms in Simulink and
visualizes their performance in a virtual simulation environment. This environment uses the Unreal
Engine from Epic Games.

Simulink blocks related to the simulation environment can be found in the UAV Toolbox >
Simulation 3D block library. These blocks provide the ability to:

• Configure prebuilt scenes in the simulation environment.
• Place and move UAVs within these scenes.
• Set up camera and lidar sensors on the vehicles.
• Simulate sensor outputs based on the environment around the UAV.
• Obtain ground truth data for semantic segmentation and depth information.

This simulation tool is commonly used to supplement real data when developing, testing, and
verifying the performance of UAV flight algorithms. In conjunction with a UAV vehicle model, you can
use these blocks to perform realistic closed-loop simulations that encompass the entire UAV flight-
control stack, from perception to control.

For more details on the simulation environment, see “How Unreal Engine Simulation for UAVs Works”
on page 2-7.

Unreal Engine Simulation Blocks
To access the UAV Toolbox > Simulation 3D library, at the MATLAB® command prompt, enter
uavsim3dlib.

Scenes

To configure a model to co-simulate with the simulation environment, add a Simulation 3D Scene
Configuration block to the model. Using this block, you can choose from a prebuilt scene where you
can test and visualize your driving algorithms. The following image is from the US City Block scene.

The toolbox includes these scenes.

2 3D Simulation – User's Guide

2-2

Scene Description
US City Block City block with intersections, barriers, and traffic

lights

If you have the UAV Toolbox Interface for Unreal Engine Projects support package, then you can
modify these scenes or create new ones. For more details, see “Customize Unreal Engine Scenes for
UAVs” on page 2-27.

Vehicles

To define a virtual vehicle in a scene, add a Simulation 3D UAV Vehicle block to your model. Using
this block, you can control the movement of the vehicle by supplying the X, Y, and yaw values that
define its position and orientation at each time step. The vehicle automatically moves along the
ground.

You can also specify the color and type of vehicle. The toolbox includes these vehicle types:

• Quadrotor
• Fixed Wing Aircraft

Sensors

You can define virtual sensors and attach them at various positions on the vehicles. The toolbox
includes these sensor modeling and configuration blocks.

Block Description
Simulation 3D Camera Camera model with lens. Includes parameters for

image size, focal length, distortion, and skew.
Simulation 3D Fisheye Camera Fisheye camera that can be described using the

Scaramuzza camera model. Includes parameters
for distortion center, image size, and mapping
coefficients.

Simulation 3D Lidar Scanning lidar sensor model. Includes
parameters for detection range, resolution, and
fields of view.

For more details on choosing a sensor, see “Choose a Sensor for Unreal Engine Simulation” on page
2-13.

Algorithm Testing and Visualization
UAV Toolbox simulation blocks provide the tools for testing and visualizing path planning, UAV
control, and perception algorithms.

Path Planning and Vehicle Control

You can use the Unreal Engine simulation environment to visualize the motion of a vehicle in a
prebuilt scene. This environment provides you with a way to analyze the performance of path
planning and vehicle control algorithms. After designing these algorithms in Simulink, you can use
the uavsim3dlib library to visualize vehicle motion in one of the prebuilt scenes.

 Unreal Engine Simulation for Unmanned Aerial Vehicles

2-3

Perception

UAV Toolbox provides several blocks for detailed camera and lidar sensor modeling. By mounting
these sensors on UAVs within the virtual environment, you can generate synthetic sensor data or
sensor detections to test the performance of your sensor models against perception algorithms.

Closed-Loop Systems

After you design and test a perception system within the simulation environment, you can then use it
to drive a control system that actually steers a vehicle. In this case, rather than manually set up a
trajectory, the UAV uses the perception system to fly itself. By combining perception and control into
a closed-loop system in the 3D simulation environment, you can develop and test more complex
algorithms, such as automated delivery.

See Also

2 3D Simulation – User's Guide

2-4

Unreal Engine Simulation Environment Requirements and
Limitations

UAV Toolbox provides an interface to a simulation environment that is visualized using the Unreal
Engine from Epic Games. This visualization engine comes installed with the toolbox. When simulating
in this environment, keep these requirements and limitations in mind.

Software Requirements
• Windows® 64-bit platform
• Visual Studio®

• Microsoft® DirectX® — If this software is not already installed on your machine and you try to
simulate in the environment, the toolbox prompts you to install it. Once you install the software,
you must restart the simulation.

In you are customizing scenes, verify that Visual Studio and your Unreal Engine project is compatible
with the Unreal Engine version supported by your MATLAB release.

MATLAB Release Unreal Engine Version Visual Studio Version
R2020b–R2021a 4.23 2019
R2021b 4.25 2019

Note Mac and Linux® platforms are not supported for Unreal Engine simulation.

Minimum Hardware Requirements
• Graphics card (GPU) — Virtual reality-ready with 8 GB of on-board RAM
• Processor (CPU) — 2.60 GHz
• Memory (RAM) — 12 GB

Limitations
The Unreal Engine simulation environment blocks do not support:

• Code generation
• Model reference
• Multiple instances of the Simulation 3D Scene Configuration block
• Multiple Unreal Engine instances in the same MATLAB session
• Parallel simulations
• Rapid accelerator mode

In addition, when using these blocks in a closed-loop simulation, all Unreal Engine simulation
environment blocks must be in the same subsystem.

 Unreal Engine Simulation Environment Requirements and Limitations

2-5

See Also

More About
• “Scenario Simulation”

External Websites
• Unreal Engine 4 Documentation

2 3D Simulation – User's Guide

2-6

https://docs.unrealengine.com/en-US/index.html

How Unreal Engine Simulation for UAVs Works
UAV Toolbox provides a co-simulation framework that you can use to model UAV algorithms in
Simulink and visualize their performance in a virtual simulation environment. This environment uses
the Unreal Engine by Epic Games.

Understanding how this simulation environment works can help you troubleshoot issues and
customize your models.

Communication with 3D Simulation Environment
When you use UAV Toolbox to run your algorithms, Simulink co-simulates the algorithms in the
visualization engine.

In the Simulink environment, UAV Toolbox:

• Configures the visualization environment, specifically the ray tracing, scene capture from
cameras, and initial object positions

• Determines the next position of the objects by using the simulation environment feedback

The diagram summarizes the communication between Simulink and the visualization engine.

Block Execution Order
During simulation, the Unreal Engine simulation blocks follow a specific execution order:

1 The Simulation 3D UAV Vehicle blocks initialize the vehicles and send their Translation, and
Rotation signal data to the Simulation 3D Scene Configuration block.

2 The Simulation 3D Scene Configuration block receives the vehicle data and sends it to the sensor
blocks.

3 The sensor blocks receive the vehicle data and use it to accurately locate and visualize the
vehicles.

The Priority property of the blocks controls this execution order. To access this property for any
block, right-click the block, select Properties, and click the General tab. By default, Simulation 3D
UAV Vehicle blocks have a priority of -1, Simulation 3D Scene Configuration blocks have a priority of
0, and sensor blocks have a priority of 1.

The diagram shows this execution order.

 How Unreal Engine Simulation for UAVs Works

2-7

If your sensors are not detecting vehicles in the scene, it is possible that the Unreal Engine
simulation blocks are executing out of order. Try updating the execution order and simulating again.
For more details on execution order, see “Control and Display Execution Order” (Simulink).

Also be sure that all 3D simulation blocks are located in the same subsystem. Even if the blocks have
the correct Priority settings, if they are located in different subsystems, they still might execute out
of order.

See Also

More About
• “Unreal Engine Simulation for Unmanned Aerial Vehicles” on page 2-2
• “Unreal Engine Simulation Environment Requirements and Limitations” on page 2-5
• “Choose a Sensor for Unreal Engine Simulation” on page 2-13
• “Coordinate Systems for Unreal Engine Simulation in UAV Toolbox” on page 2-9

2 3D Simulation – User's Guide

2-8

Coordinate Systems for Unreal Engine Simulation in UAV
Toolbox

UAV Toolbox enables you to simulate your driving algorithms in a virtual environment that uses the
Unreal Engine from Epic Games. In general, the coordinate systems used in this environment follow
the conventions described in “Coordinate Systems for Modeling” (Aerospace Toolbox). However,
when simulating in this environment, it is important to be aware of the specific differences and
implementation details of the coordinate systems.

UAV Toolbox uses these coordinate systems to calculate the vehicle dynamics and position objects in
the Unreal Engine visualization environment.

Environment Description Coordinate Systems
UAV vehicle
dynamics in
Simulink

The right-hand rule establishes the X-Y-Z
sequence and rotation of the coordinate axes
used to calculate the vehicle dynamics. The UAV
Toolbox interface to the Unreal Engine simulation
environment uses the right-handed (RH)
Cartesian coordinate systems:

• Earth-fixed (inertial)
• Vehicle

“Earth-Fixed (Inertial)
Coordinate System” on page 2-
9

“Body (Non-Inertial) Coordinate
System” on page 2-9

Unreal Engine
visualization

To position objects and query the Unreal Engine
visualization environment, the UAV Toolbox uses
a left-hand rule world coordinate system.

“Unreal Engine World
Coordinate System” on page 2-
11

Earth-Fixed (Inertial) Coordinate System
The earth-fixed coordinate system (XE, YE, ZE) axes are fixed in an inertial reference frame. The
inertial reference frame has zero linear and angular acceleration and zero angular velocity. In
Newtonian physics, the earth is an inertial reference.

Axis Description
XE The XE axis is in the forward direction of the vehicle.

The XE and YE axes are parallel to the ground plane. The ground plane is a
horizontal plane normal to the gravitational vector.

YE

ZE In the Z-up orientation, the positive ZE axis points upward.

In the Z-down orientation, the positive ZE axis points downward.

Body (Non-Inertial) Coordinate System
Modeling aircraft and spacecraft are simplest if you use a coordinate system fixed in the body itself.
In the case of aircraft, the forward direction is modified by the presence of wind, and the craft's
motion through the air is not the same as its motion relative to the ground. The non-inertial body
coordinate system is fixed in both origin and orientation to the moving craft. The craft is assumed to
be rigid. The orientation of the body coordinate axes is fixed in the shape of body.

 Coordinate Systems for Unreal Engine Simulation in UAV Toolbox

2-9

• The x-axis points through the nose of the craft.
• The y-axis points to the right of the x-axis (facing in the pilot's direction of view), perpendicular to

the x-axis.
• The z-axis points down through the bottom of the craft, perpendicular to the x-y plane and

satisfying the RH rule.

Translational Degrees of Freedom

Translations are defined by moving along these axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom

Rotations are defined by the Euler angles P, Q, R or Φ, Θ, Ψ. They are

• P or Φ: Roll about the x-axis
• Q or Θ: Pitch about the y-axis
• R or Ψ: Yaw about the z-axis

2 3D Simulation – User's Guide

2-10

Unless otherwise specified, by default the software uses ZYX rotation order for Euler angles.

Unreal Engine World Coordinate System
The Unreal Engine environment uses a left-hand rule world coordinate system with axes that are
fixed in the inertial reference frame.

Axis Description
X Forward direction of the vehicle

Roll — Right-handed rotation about X-axis

 Coordinate Systems for Unreal Engine Simulation in UAV Toolbox

2-11

Axis Description
Y Extends to the right of the vehicle, parallel to the ground plane

Pitch — Right-handed rotation about Y-axis
Z Extends upwards

Yaw — Left-handed rotation about Z-axis

See Also
Quadrotor | Fixed Wing Aircraft

More About
• “How Unreal Engine Simulation for UAVs Works” on page 2-7
• “Simulate Simple Flight Scenario and Sensor in Unreal Engine Environment” on page 2-14

2 3D Simulation – User's Guide

2-12

Choose a Sensor for Unreal Engine Simulation
In UAV Toolbox, you can obtain high-fidelity sensor data from a virtual environment. This
environment is rendered using the Unreal Engine from Epic Games.

The table summarizes the sensor blocks that you can simulate in this environment.

Sensor Block Description Visualization Example
Simulation 3D
Camera

• Camera with lens that is
based on the ideal pinhole
camera. See “What Is
Camera Calibration?”
(Computer Vision Toolbox)

• Includes parameters for
image size, focal length,
distortion, and skew

• Includes options to output
ground truth for depth
estimation and semantic
segmentation

Display camera images by using
a Video Viewer or To Video
Display block. Sample
visualization:

“Depth and
Semantic
Segmentation
Visualization
Using Unreal
Engine
Simulation” on
page 2-18

Display depth maps by using a
Video Viewer or To Video
Display block. Sample
visualization:

“Depth and
Semantic
Segmentation
Visualization
Using Unreal
Engine
Simulation” on
page 2-18

Display semantic segmentation
maps by using a Video Viewer or
To Video Display block. Sample
visualization:

“Depth and
Semantic
Segmentation
Visualization
Using Unreal
Engine
Simulation” on
page 2-18

Simulation 3D
Fisheye Camera

• Fisheye camera that can be
described using the
Scaramuzza camera model.
See “Fisheye Calibration
Basics” (Computer Vision
Toolbox)

• Includes parameters for
distortion center, image size,
and mapping coefficients

Display camera images by using
a Video Viewer or To Video
Display block. Sample
visualization:

“Simulate
Simple Flight
Scenario and
Sensor in
Unreal Engine
Environment”
on page 2-14

Simulation 3D
Lidar

• Scanning lidar sensor model
• Includes parameters for

detection range, resolution,
and fields of view

Display point cloud data by
using pcplayer within a
MATLAB Function block.
Sample visualization:

“UAV Package
Delivery” on
page 1-65

See Also
Simulation 3D Scene Configuration

 Choose a Sensor for Unreal Engine Simulation

2-13

Simulate Simple Flight Scenario and Sensor in Unreal Engine
Environment

UAV Toolbox™ provides blocks for visualizing sensors in a simulation environment that uses the
Unreal Engine® from Epic Games®. This model simulates a simple flight scenario in a prebuilt scene
and captures data from the scene using a fisheye camera sensor. Use this model to learn the basics of
configuring and simulating scenes, vehicles, and sensors. For more background on the Unreal Engine
simulation environment, see “Unreal Engine Simulation for Unmanned Aerial Vehicles” on page 2-2.

Model Overview

The model consists of these main components:

• Scene – A Simulation 3D Scene Configuration block configures the scene in which you simulate.
• UAV – A Simulation 3D UAV Vehicle blocks configures the quadrotor within the scene and specifies

its trajectory.
• Sensor – A Simulation 3D Fisheye Camera configures the mounting position and parameters of the
fisheye camera used to capture simulation data. A Video Viewer (Computer Vision Toolbox) block
visualizes the simulation output of this sensor.

You can open the model using the following command.

open_system("uav_simple_flight_model.slx")

Inspect Scene

In the Simulation 3D Scene Configuration block, the Scene name parameter determines the scene
where the simulation takes place. This model uses the US City Block scene. To explore a scene, you
can open the 2D image corresponding to the Unreal Engine scene.

imshow('USCityBlock.jpg',...
 'XData', [-242.998152046784, 200.198152046784],...

2 3D Simulation – User's Guide

2-14

 'YData', [-215.598152046784,227.598152046784]);
set(gca,'YDir','normal')

The Scene view parameter of this block determines the view from which the Unreal Engine window
displays the scene. In this block, Scene view is set to the root of the scene (the scene origin), select
root. You can also change the scene view to the quadrotor UAV.

Inspect Vehicle

The Simulation 3D UAV Vehicle block models the quadcopter, named Quadrotor1, in the scenario.
During simulation, the quadrotor flys one complete circle with a radius of 5m and elevation of 1.5m
around the center of the scene. The yaw angle of the quadrotor viewpoint oscillates from left to right

 Simulate Simple Flight Scenario and Sensor in Unreal Engine Environment

2-15

in the direction of travel. To create more realistic trajectories, you can obtain waypoints from a scene
and specify these waypoints as inputs to the Simulation 3D UAV Vehicle block.

Inspect Sensor

The Simulation 3D Fisheye Camera block models the sensor used in the scenario. Open this block and
inspect its parameters.

• The Mounting tab contains parameters that determine the mounting location of the sensor. The
fisheye camera sensor is mounted forward along the X-axis of the center of the ego vehicle by 0.1
meters.

• The Parameters tab contains the intrinsic camera parameters of a fisheye camera. These
parameters are set to their default values except the mapping coefficient, where the second
coefficient is set to -0.0005 to model lens distortion.

• The Ground Truth tab contains a parameter for outputting the location and orientation of the
sensor in meters and radians. In this model, the block outputs these values so you can see how
they change during simulation.

The block outputs images captured from the simulation. During simulation, the Video Viewer block
displays these images. This image shows a sample snapshot from the Video Viewer block stream.

Simulate Model

When the simulation begins, it can take a few seconds for the visualization engine to initialize,
especially when you are running it for the first time. The MathWorks_Aerospace window shows a
view of the scene in the Unreal Engine environment.

2 3D Simulation – User's Guide

2-16

To change the view of the scene during simulation, use the numbers 1–9 on the numeric keypad. For a
bird's-eye view of the scene, press 0.

After simulating the model, try modifying the intrinsic camera parameters and observe the effects on
simulation. You can also change the type of sensor block. For example, try substituting the 3D
Simulation Fisheye Camera with a 3D Simulation Camera block. For more details on the available
sensor blocks, see “Choose a Sensor for Unreal Engine Simulation” on page 2-13.

See Also
Simulation 3D Scene Configuration | Simulation 3D Camera | Simulation 3D UAV Vehicle

 Simulate Simple Flight Scenario and Sensor in Unreal Engine Environment

2-17

Depth and Semantic Segmentation Visualization Using Unreal
Engine Simulation

This example shows how to visualize depth and semantic segmentation data captured from a camera
sensor in a simulation environment. This environment is rendered using the Unreal Engine® from
Epic Games®.

You can use depth visualizations to validate depth estimation algorithms for your sensors. You can use
semantic segmentation visualizations to analyze the classification scheme used for generating
synthetic semantic segmentation data from the Unreal Engine environment.

Model Setup

The model used in this example simulates a vehicle driving in a city scene.

• A Simulation 3D Scene Configuration block sets up simulation with the US City Block scene.
• A Simulation 3D UAV Vehicle block specifies the driving route of the vehicle.
• A Simulation 3D Camera block mounted to the quadrotor captures data from the flight. This block

outputs the camera, depth, and semantic segmentation displays by using To Video Display
(Computer Vision Toolbox) (Computer Vision Toolbox) blocks.

Depth Visualization

A depth map is a grayscale representation of camera sensor output. These maps visualize camera
images in grayscale, with brighter pixels indicating objects that are farther away from the sensor. You
can use depth maps to validate depth estimation algorithms for your sensors.

The Depth port of the Simulation 3D Camera block outputs a depth map of values in the range of 0 to
1000 meters. In this model, for better visibility, a Saturation block saturates the depth output to a
maximum of 150 meters. Then, a Gain block scales the depth map to the range [0, 1] so that the To
Video Display block can visualize the depth map in grayscale.

Semantic Segmentation Visualization

Semantic segmentation describes the process of associating each pixel of an image with a class label,
such as road, building, or traffic sign. In the 3D simulation environment, you generate synthetic

2 3D Simulation – User's Guide

2-18

semantic segmentation data according to a label classification scheme. You can then use these labels
to train a neural network for UAV flight applications, such as landing zone identification. By
visualizing the semantic segmentation data, you can verify your classification scheme.

The Labels port of the Simulation 3D Camera block outputs a set of labels for each pixel in the
output camera image. Each label corresponds to an object class. For example, in the default
classification scheme used by the block, 1 corresponds to buildings. A label of 0 refers to objects of
an unknown class and appears as black. For a complete list of label IDs and their corresponding
object descriptions, see the Labels port description on the Simulation 3D Camera block reference
page.

The MATLAB® Function block uses the label2rgb (Image Processing Toolbox) function to convert
the labels to a matrix of RGB triplets for visualization. The colormap is based on the colors used in
the CamVid dataset, as shown in the “Semantic Segmentation Using Deep Learning” (Computer
Vision Toolbox) example. The colors are mapped to the predefined label IDs used in the default
Unreal Engine simulation scenes. The helper function sim3dColormap defines the colormap. Inspect
these colormap values.

open sim3dColormap.m

Model Simulation

Run the model.

sim('uav_ue4_depth_imaging.slx');

When the simulation begins, it can take a few seconds for the visualization engine to initialize,
especially when you are running it for the first time. The MathWorks_Aerospace window displays
the scene from the scene origin. In this scene, the quadrotor UAV flies a short distance down one city
block.

 Depth and Semantic Segmentation Visualization Using Unreal Engine Simulation

2-19

The Camera Display, Depth Display, and Semantic Segmentation Display blocks display the outputs
from the camera sensor.

2 3D Simulation – User's Guide

2-20

 Depth and Semantic Segmentation Visualization Using Unreal Engine Simulation

2-21

To change the visualization range of the output depth data, try updating the values in the Saturation
and Gain blocks.

To change the semantic segmentation colors, try modifying the color values defined in the
sim3dColormap function. Alternatively, in the uavlabel2rgb MATLAB Function block, try replacing
the input colormap with your own colormap or a predefined colormap. See colormap.

See Also
Simulation 3D Scene Configuration | Simulation 3D Camera | Simulation 3D UAV Vehicle

2 3D Simulation – User's Guide

2-22

Stream Camera, Depth and Semantic Segmentation Data from
Unreal Engine to NVIDIA Jetson

This example shows how to stream simulated camera, depth, and semantic segmentation label data
from an Unreal Engine® scene to NVIDIA® Jetson hardware using the Video Send block in
Simulink®. It then shows how to visualize incoming data streams on a monitor connected to the
Jetson platform, by deploying separate models for each incoming data stream. The deployed models
contain the Network Video Receive and SDL Video Display blocks from the MATLAB® Coder™
Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms.

Send Data Streams from Simulink

Open the model StreamFromUnrealToJetsonExampleModel.

open_system("StreamFromUnrealToJetsonExampleModel.slx")

This model simulates a US City Block scene in Unreal Engine, in which a UAV follows a trajectory
defined by the position and orientation values defined in the model workspace. The UAV has an
onboard camera. The camera is modeled by Simulation 3D Camera block that outputs the RGB image,
depth map and semantic segmentation map of labels that correspond to the objects in the scene. The
frame rate of the camera is configured to be 30 frames per second (fps) as defined by the Sample
time parameter in the Simulation 3D Scene Configuration block. The three Video Send blocks
stream corresponding data to the Jetson hardware. Change the IP address and port number values on
these blocks to values that correspond to your Jetson hardware and network setup. Note that the Max
frame time (ms) parameter in all three blocks is configured to be 34 milliseconds based on the
input frame rate of 30 fps. All three blocks are configured to stream to different ports on the same
remote IP address.

Inspect the block parameter configuration for the three data streams. The depth map is converted to
uint16 data type using lossy rescaling and is configured to stream as 16-bit grayscale image with
VP9 compression format. Additionally, note that the segLabels2RGBImage MATLAB Function block
converts the segmentation label map to stream as a matrix of RGB values analogous to the camera
image stream, with VP8 compression format. For more information about the colormap for label

 Stream Camera, Depth and Semantic Segmentation Data from Unreal Engine to NVIDIA Jetson

2-23

visualization, see “Depth and Semantic Segmentation Visualization Using Unreal Engine Simulation”
on page 2-18.

Run StreamFromUnrealToJetsonExampleModel to start streaming data to the Jetson.

sim("StreamFromUnrealToJetsonExampleModel.slx");

Receive and Visualize Data Streams on Jetson

To visualize the data now streaming to Jetson, you must deploy three separate models individually to
the Jetson hardware. This is because a Simulink model can only contain one SDL Video Display
block and there are three separate data streams. First, open the model,
VideoStreamReceiveOnJetsonExampleModel.

open_system("VideoStreamReceiveOnJetsonExampleModel.slx")

Note that the port number and compression parameters in the Network Video Receive block are
same as those of the corresponding Video Send block streaming camera images. The sample time
can be any value that is less than or equal to the sample time of the data stream. On the Hardware
tab in the toolstrip, select Hardware Settings. Under Hardware board settings > Target
hardware resources, populate the Device Address, Username and Password fields with values
corresponding to your Jetson board. Then, under Deploy section of the Hardware tab, select Build,
Deploy & Start to generate code for the model and deploy it to the Jetson. The SDL Video Display
window opens up and visualizes the RGB image stream on the monitor connected to the Jetson.

To restart streaming after the simulation is complete, re-run
StreamFromUnrealToJetsonExampleModel. Then, open and deploy the model,

2 3D Simulation – User's Guide

2-24

DepthStreamReceiveOnJetsonExampleModel, to visualize the depth map stream on the monitor
connected to the Jetson.

sim("StreamFromUnrealToJetsonExampleModel.slx");
open_system("DepthStreamReceiveOnJetsonExampleModel.slx")

To restart streaming after the simulation is complete, re-run
StreamFromUnrealToJetsonExampleModel. Then, open and deploy the model,
LabelStreamReceiveOnJetsonExampleModel, to visualize the semantic segmentation label map
stream on the monitor connected to the Jetson.

sim("StreamFromUnrealToJetsonExampleModel.slx");
open_system("LabelStreamReceiveOnJetsonExampleModel.slx")

 Stream Camera, Depth and Semantic Segmentation Data from Unreal Engine to NVIDIA Jetson

2-25

2 3D Simulation – User's Guide

2-26

Customize Unreal Engine Scenes for UAVs
UAV Toolbox comes installed with prebuilt scenes in which to simulate and visualize the performance
of UAV algorithms modeled in Simulink. These scenes are visualized using the Unreal Engine from
Epic Games. By using the Unreal® Editor and the UAV Toolbox Interface for Unreal Engine Projects,
you can customize these scenes. You can also use the Unreal Editor and the support package to
simulate within scenes from your own custom project.

With custom scenes, you can co-simulate in both Simulink and the Unreal Editor so that you can
modify your scenes between simulation runs. You can also package your scenes into an executable file
so that you do not have to open the editor to simulate with these scenes.

To customize Unreal Engine scenes for UAV flight simulations, follow these steps:

1 “Install Support Package for Customizing Scenes” on page 2-28
2 “Migrate Projects Developed Using Prior Support Packages” on page 2-31
3 “Customize Unreal Engine Scenes Using Simulink and Unreal Editor” on page 2-32
4 “Package Custom Scenes into Executable” on page 2-38

See Also
Simulation 3D Scene Configuration

 Customize Unreal Engine Scenes for UAVs

2-27

Install Support Package for Customizing Scenes
To customize scenes in the Unreal Editor and use them in Simulink, you must install the UAV Toolbox
Interface for Unreal Engine Projects.

Note These installation instructions apply to R2021b. If you are using a previous release, see the
documentation for Other Releases.

Verify Software and Hardware Requirements
Before installing the support package, make sure that your environment meets the minimum software
and hardware requirements described in “Unreal Engine Simulation Environment Requirements and
Limitations” on page 2-5.

Install Support Package
To install the UAV Toolbox Interface for Unreal Engine Projects support package, follow these steps:

1 On the MATLAB Home tab, in the Environment section, select Add-Ons > Get Add-Ons.

2 In the Add-On Explorer window, search for the UAV Toolbox Interface for Unreal Engine Projects
support package. Click Install.

Note You must have write permission for the installation folder.

Set Up Scene Customization Using Support Package
The UAV Toolbox Interface for Unreal Engine Projects support package includes these components:

• An Unreal Engine project file (AutoVrtlEnv.uproject) and its associated files. This project file
includes editable versions of the prebuilt 3D scenes that you can select from the Scene source
parameter of the Simulation 3D Scene Configuration block.

• Two plugins, MathWorkSimulation and MathworksUAVContent. These plugins establish the
connection between Simulink and the Unreal Editor and is required for co-simulation.

To set up scene customization, you must copy this project and plugin onto your local machine.

2 3D Simulation – User's Guide

2-28

https://www.mathworks.com/help/doc-archives.html

Copy Project to Local Folder

Copy the AutoVrtlEnv project folder into a folder on your local machine.

1 Specify the path to the support package folder that contains the project. If you previously
downloaded the support package, specify only the latest download path, as shown here. Also
specify a local folder destination in which to copy the project. This code specifies a local folder of
C:\Local.

supportPackageFolder = fullfile(...
 matlabshared.supportpkg.getSupportPackageRoot, ...
 "toolbox","shared","sim3dprojects","spkg");
localFolder = "C:\Local";

2 Copy the AutoVrtlEnv project from the support package folder to the local destination folder.

projectFolderName = "AutoVrtlEnv";
projectSupportPackageFolder = fullfile(supportPackageFolder,"project",projectFolderName);
projectLocalFolder = fullfile(localFolder,projectFolderName);
if ~exist(projectLocalFolder,"dir")
 copyfile(projectSupportPackageFolder,projectLocalFolder);
end

The AutoVrtlEnv.uproject file and all of its supporting files are now located in a folder
named AutoVrtlEnv within the specified local folder. For example: C:\Local\AutoVrtlEnv.

Copy Plugin to Unreal Editor

Copy the MathWorksSimulation and MathworksUAVContent plugin folders into the Plugins
folder of your Unreal Engine installation.

1 Specify the local folder containing your Unreal Engine installation. This code shows the default
installation location for the editor on a Windows machine.

ueInstallFolder = "C:\Program Files\Epic Games\UE_4.25";
2 Copy the plugins from the support package into the Plugins folder.

mwSimPluginName = "MathWorksSimulation.uplugin";
mwSimPluginFolder = fullfile(supportPackageFolder,"plugins","mw_simulation","MathWorksSimulation");
mwUAVPluginName = "MathworksUAVContent.uplugin";
mwUAVPluginFolder = fullfile(supportPackageFolder,"plugins","mw_uav","MathworksUAVContent");

uePluginFolder = fullfile(ueInstallFolder,"Engine","Plugins");
uePluginDestination = fullfile(uePluginFolder,"Marketplace","MathWorks");

cd(uePluginFolder)
foundPlugins = [dir("**/" + mwSimPluginName) dir("**/" + mwUAVPluginName)];

if ~isempty(foundPlugins)
 numPlugins = size(foundPlugins,1);
 msg2 = cell(1,numPlugins);
 pluginCell = struct2cell(foundPlugins);

 msg1 = "Plugin(s) already exist here:" + newline + newline;
 for n = 1:numPlugins
 msg2{n} = " " + pluginCell{2,n} + newline;
 end
 msg3 = newline + "Please remove plugin folder(s) and try again.";

 Install Support Package for Customizing Scenes

2-29

 msg = msg1 + msg2 + msg3;
 warning(msg);
else
 copyfile(mwSimPluginFolder, fullfile(uePluginDestination,"MathWorksSimulation"));
 disp("Successfully copied MathWorksSimulation plugin to UE4 engine plugins!")
 copyfile(mwUAVPluginFolder, fullfile(uePluginDestination,"MathworksUAVContent"));
 disp("Successfully copied MathworksUAVContent plugin to UE4 engine plugins!")
end

After you install and set up the support package, you can begin customizing scenes. If you want to
use a project developed using a prior release of the UAV Toolbox Interface for Unreal Engine Projects
support package, you must migrate the project to make it compatible with the currently supported
Unreal Editor version, see “Migrate Projects Developed Using Prior Support Packages” on page 2-
31. Otherwise, see “Customize Unreal Engine Scenes Using Simulink and Unreal Editor” on page 2-
32.

See Also

2 3D Simulation – User's Guide

2-30

Migrate Projects Developed Using Prior Support Packages
After you install the UAV Toolbox Interface for Unreal Engine Projects support package as described
in “Install Support Package for Customizing Scenes” on page 2-28, you may need to migrate your
project. If your Simulink model uses an Unreal Engine executable or project developed using a prior
release of the support package, you must migrate the project to make it compatible with Unreal
Editor 4.25. Follow these steps:

1 Open Unreal Engine 4.25. For example, navigate to C:\Program Files\Epic Games
\UE_4.25\Engine\Binaries\Win64 and open UE4Editor.exe.

2 Use the Unreal Project Browser to open the project that you want to migrate.
3 Follow the prompts to open a copy of the project. The editor creates a new project folder in the

same location as the original, appended with 4.25. Close the editor.
4 In a file explorer, remove the space in the migrated project folder name. For example, rename

MyProject 4.25 to MyProject4.25.
5 Use MATLAB to open the migrated project in Unreal Editor 4.25. For example, if you have a

migrated project saved to the C:/Local folder, use this MATLAB code:

path = fullfile('C:','Local','MyProject4.25','MyProject.uproject');
editor = sim3d.Editor(path);
open(editor);

Note The support package may includes changes in the implementation of some actors.
Therefore, if the original project contains actors that are placed in the scene, some of them might
not fully migrate to Unreal Editor 4.25. To check, examine the Output Log.

The log might contain error messages. For more information, see the Unreal Engine 4
Documentation or contact MathWorks Technical Support.

6 Optionally, after you migrate the project, you can use the project to create an Unreal Engine
executable. See “Package Custom Scenes into Executable” on page 2-38.

After you migrate the project, you can create custom scenes. See “Customize Unreal Engine Scenes
Using Simulink and Unreal Editor” on page 2-32.

See Also
Simulation 3D Scene Configuration

More About
• “Customize Unreal Engine Scenes for UAVs” on page 2-27

 Migrate Projects Developed Using Prior Support Packages

2-31

https://docs.unrealengine.com/en-us
https://docs.unrealengine.com/en-us
https://www.mathworks.com/support/contact_us.html

Customize Unreal Engine Scenes Using Simulink and Unreal
Editor

After you install the UAV Toolbox Interface for Unreal Engine Projects support package as described
in “Install Support Package for Customizing Scenes” on page 2-28, you can simulate in custom scenes
simultaneously from both the Unreal Editor and Simulink. By using this co-simulation framework, you
can add vehicles and sensors to a Simulink model and then run this simulation in your custom scene.

To use a project that you developed using a prior release of the support package, first migrate the
project to be compatible with the currently supported Unreal Engine version. See “Migrate Projects
Developed Using Prior Support Packages” on page 2-31.

Open Unreal Editor from Simulink
If you open your Unreal project file directly in the Unreal Editor, Simulink is unable to establish a
connection with the editor. To establish this connection, you must open your project from a Simulink
model.

1 Open a Simulink model configured to simulate in the 3D environment. At a minimum, the model
must contain a Simulation 3D Scene Configuration block. For example, open a simple model that
simulates a UAV flying in a US city block. This model here is the photo-realistic simulation variant
from the “UAV Package Delivery” on page 1-65 example.

2 In the Simulation 3D Scene Configuration block of this model, set the Scene source parameter
to Unreal Editor.

3 In the Project parameter, browse for the project file that contains the scenes that you want to
customize.

For example, this sample path specifies the AutoVrtlEnv project that comes installed with the
UAV Toolbox Interface for Unreal Engine Projects support package.

C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject

This sample path specifies a custom project.

2 3D Simulation – User's Guide

2-32

Z:\UnrealProjects\myProject\myProject.uproject
4 Click Open Unreal Editor. The Unreal Editor opens and loads a scene from your project.

The first time that you open the Unreal Editor from Simulink, you might be asked to rebuild
UE4Editor DLL files or the AutoVrtlEnv module. Click Yes to rebuild these files or modules. The
editor also prompts you that new plugins are available. Click Manage Plugins and verify that the
MathWorks Interface and Mathworks UAV Content plugins are installed. Make sure both plugins
are enabled by verifying that the Enabled box is checked for both. These plugins are the
MathWorksSimulation.uplugin and MathworksUAVContent.uplugin files that you copied into
your Unreal Editor installation in “Install Support Package for Customizing Scenes” on page 2-28.
After enabling the plugins, you may have to restart the Unreal Editor. Click Restart Now if
prompted.

When the editor opens, you can ignore any warning messages about files with the name
'_BuiltData' that failed to load.

If you receive a warning that the lighting needs to be rebuilt, from the toolbar above the editor
window, select Build > Build Lighting Only. The editor issues this warning the first time you open
a scene or when you add new elements to a scene. To use the lighting that comes installed with
AutoVrtlEnv, see Use AutoVrtlEnv Project Lighting in Custom Scene on page 2-35.

Reparent Actor Blueprint

Note If you are using a scene from the AutoVrtlEnv project that comes installed with the UAV
Toolbox Interface for Unreal Engine Projects support package, skip this section. However, if you
create a new scene based off of one of the scenes in this project, then you must complete this section.

The first time that you open a custom scene from Simulink, you need to associate, or reparent, this
project with the Sim3dLevelScriptActor level blueprint used in UAV Toolbox. The level blueprint
controls how objects interact with the Unreal Engine environment once they are placed in it.
Simulink returns an error at the start of simulation if the project is not reparented. You must reparent
each scene in a custom project separately.

To reparent the level blueprint, follow these steps:

1 In the Unreal Editor toolbar, select Blueprints > Open Level Blueprint.
2 In the Level Blueprint window, select File > Reparent Blueprint.
3 Click the Sim3dLevelScriptActor blueprint. If you do not see the Sim3dLevelScriptActor

blueprint listed, use these steps to check that you have the MathWorksSimulation plugin
installed and enabled:

a In the Unreal Editor toolbar, select Settings > Plugins.
b In the Plugins window, verify that the MathWorks Interface plugin is listed in the installed

window. If the plugin is not already enabled, select the Enabled check box.

If you do not see the MathWorks Interface plugin in this window, repeat the steps under
“Copy Plugin to Unreal Editor” on page 2-29 and reopen the editor from Simulink.

c Close the editor and reopen it from Simulink.
4 Close the Level Blueprint window.

 Customize Unreal Engine Scenes Using Simulink and Unreal Editor

2-33

Create or Modify Scenes in Unreal Editor
After you open the editor from Simulink, you can modify the scenes in your project or create new
scenes.

Open Scene

In the Unreal Editor, scenes within a project are referred to as levels. Levels come in several types,
and scenes have a level type of map.

To open a prebuilt scene from the AutoVrtlEnv.uproject file, in the Content Browser pane
below the editor window, navigate to the Content > Maps folder. Then, select the map that
corresponds to the scene you want to modify.

Unreal Editor Map UAV Toolbox Scene
USCityBlock US City Block

To open a scene within your own project, in the Content Browser pane, navigate to the folder that
contains your scenes.

Create New Scene

To create a new scene in your project, from the top-left menu of the editor, select File > New Level.

Alternatively, you can create a new scene from an existing one. This technique is useful if you want to
use one of the prebuilt scenes in the AutoVrtlEnv project as a starting point for creating your own
scene. To save a version of the currently opened scene to your project, from the top-left menu of the
editor, select File > Save Current As. The new scene is saved to the same location as the existing
scene.

Add Assets to Scene

In the Unreal Editor, elements within a scene are referred to as assets. To add assets to a scene, you
can browse or search for them in the Content Browser pane at the bottom and drag them into the
editor window.

When adding assets to a scene that is in the AutoVrtlEnv project, you can choose from a library of
driving-related assets. These assets are built as static meshes and begin with the prefix SM_. Search
for these objects in the Content Browser pane.

For example, add a stop sign to a scene in the AutoVrtlEnv project.

1 In the Content Browser pane at the bottom of the editor, navigate to the Content folder.
2 In the search bar, search for SM_StopSign. Drag the stop sign from the Content Browser into

the editing window. You can then change the position of the stop sign in the editing window or on
the Details pane on the right, in the Transform section.

The Unreal Editor uses a left-hand Z-up coordinate system, where the Y-axis points to the right. UAV
Toolbox uses a right-hand Z-down coordinate system, where the Y-axis points to the left. When
positioning objects in a scene, keep this coordinate system difference in mind. In the two coordinate
systems, the positive and negative signs for the Y-axis and pitch angle values are reversed.

For more information on modifying scenes and adding assets, see Unreal Engine 4 Documentation.

2 3D Simulation – User's Guide

2-34

https://docs.unrealengine.com/en-US/index.html

To migrate assets from the AutoVrtlEnv project into your own project file, see Migrating Assets in
the Unreal Engine documentation.

To obtain semantic segmentation data from a scene, then you must apply stencil IDs to the objects
added to a scene. For more information, see “Apply Semantic Segmentation Labels to Custom Scenes”
on page 2-41.

Use AutoVrtlEnv Project Lighting in Custom Scene

To use the lighting that comes installed with the AutoVrtlEnv project in UAV Toolbox, follow these
steps.

1 On the World Settings tab, clear Force no precomputed lighting.

2 Under Build, select Lighting Quality > Production to rebuild the maps with production
quality. Rebuilding large maps can take time.

Run Simulation
Verify that the Simulink model and Unreal Editor are configured to co-simulate by running a test
simulation.

1 In the Simulink model, click Run.

Because the source of the scenes is the project opened in the Unreal Editor, the simulation does
not start. Instead, you must start the simulation from the editor.

 Customize Unreal Engine Scenes Using Simulink and Unreal Editor

2-35

https://docs.unrealengine.com/en-US/Engine/Content/Browser/UserGuide/Migrate/index.html

2 Verify that the Diagnostic Viewer window in Simulink displays this message:

In the Simulation 3D Scene Configuration block, you set the scene source
to 'Unreal Editor'. In Unreal Editor, select 'Play' to view the scene.

This message confirms that Simulink has instantiated vehicles and other objects in the Unreal
Engine 3D environment.

3 In the Unreal Editor, click Play. The simulation runs in the scene currently open in the Unreal
Editor.

• If your Simulink model contains vehicles, these vehicles drive through the scene that is open
in the editor.

• If your Simulink model includes sensors, these sensors capture data from the scene that is
open in the editor.

To control the view of the scene during simulation, in the Simulation 3D Scene Configuration block,
select the vehicle name from the Scene view parameter. To change the scene view as the simulation
runs, use the numeric keypad in the editor. The table shows the position of the camera displaying the
scene, relative to the vehicle selected in the Scene view parameter.

Key Camera View
1 Back left
2 Back
3 Back

right
4 Left
5 Internal
6 Right
7 Front left
8 Front
9 Front

right
0 Overhead

To restart a simulation, click Run in the Simulink model, wait until the Diagnostic Viewer displays the
confirmation message, and then click Play in the editor. If you click Play before starting the

2 3D Simulation – User's Guide

2-36

simulation in your model, the connection between Simulink and the Unreal Editor is not established,
and the editor displays an empty scene.

After tuning your custom scene based on simulation results, you can then package the scene into an
executable. For more details, see “Package Custom Scenes into Executable” on page 2-38.

See Also

 Customize Unreal Engine Scenes Using Simulink and Unreal Editor

2-37

Package Custom Scenes into Executable

Package Scene into Executable Using Unreal Engine
1 Open the project containing the scene in the Unreal Editor. You must open the project from a

Simulink model that is configured to co-simulate with the Unreal Editor. For more details on this
configuration, see “Customize Unreal Engine Scenes Using Simulink and Unreal Editor” on page
2-32.

2 Ensure the plugin content is visible in the Content Browser. Under View Options, check the
Show Engine Content and Show Plugin Content check boxes.

3 In the Unreal Editor toolbar, select Settings > Project Settings to open the Project Settings
window.

4 In the left pane, in the Project section, click Packaging.
5 In the Packaging section, set or verify the options in the table. If you do not see all these

options, at the bottom of the Packaging section, click the Show Advanced expander.

Packaging Option Enable or Disable
Use Pak File Enable
Cook everything in the project content
directory (ignore list of maps below)

Disable

Cook only maps (this only affects
cookall)

Enable

Create compressed cooked packages Enable
Exclude editor content while cooking Enable

2 3D Simulation – User's Guide

2-38

6 Specify the scene from the project that you want to package into an executable.

a In the List of maps to include in a packaged build option, click the Adds Element
button .

b Specify the path to the scene that you want to include in the executable. By default, the
Unreal Editor saves maps to the /Game/Maps folder. For example, if the /Game/Maps folder
has a scene named myScene that you want to include in the executable, enter /Game/Maps/
myScene.

c Add or remove additional scenes as needed.
7 Specify the required asset directories to include in the executable. These directories are located

in the MathWorksSimulation plugin.

Under Additional Asset Directories to Cook, click the Adds Element button to add
elements and specify these directories:

• /MathWorksSimulation/Characters
• /MathWorksSimulation/VehiclesCommon
• /MathWorksSimulation/Vehicles
• /MathWorksSimulation/Weather

To include the MathworksUAVContent plugin assets, also add that entire directory:

• /MathWorksUAVContent
8 Rebuild the lighting in your scenes. If you do not rebuild the lighting, the shadows from the light

source in your executable file are incorrect and a warning about rebuilding the lighting displays
during simulation. In the Unreal Editor toolbar, select Build > Build Lighting Only.

9 (Optional) If you plan to semantic segmentation data from the scene by using a Simulation 3D
Camera block, enable rendering of the stencil IDs. In the left pane, in the Engine section, click
Rendering. Then, in the main window, in the Postprocessing section, set Custom Depth-
Stencil Pass to Enabled with Stencil. For more details on applying stencil IDs for semantic
segmentation, see “Apply Semantic Segmentation Labels to Custom Scenes” on page 2-41.

10 Close the Project Settings window.
11 In the top-left menu of the editor, select File > Package Project > Windows > Windows (64-

bit). Select a local folder in which to save the executable, such as to the root of the project file
(for example, C:/Local/myProject).

Note Packaging a project into an executable can take several minutes. The more scenes that you
include in the executable, the longer the packaging takes.

Once packaging is complete, the folder where you saved the package contains a
WindowsNoEditor folder that includes the executable file. This file has the same name as the
project file.

Note If you repackage a project into the same folder, the new executable folder overwrites the
old one.

 Package Custom Scenes into Executable

2-39

Suppose you package a scene that is from the myProject.uproject file and save the
executable to the C:/Local/myProject folder. The editor creates a file named
myProject.exe with this path:

C:/Local/myProject/WindowsNoEditor/myProject.exe

Simulate Scene from Executable in Simulink

1 In the Simulation 3D Scene Configuration block of your Simulink model, set the Scene source
parameter to Unreal Executable.

2 Set the File name parameter to the name of your Unreal Editor executable file. You can either
browse for the file or specify the full path to the file by using backslashes. For example:

C:\Local\myProject\WindowsNoEditor\myProject.exe
3 Set the Scene parameter to the name of a scene from within the executable file. For example:

 /Game/Maps/myScene
4 Run the simulation. The model simulates in the custom scene that you created.

If you are simulating a scene from a project that is not based on the AutoVrtlEnv project, then the
scene simulates in full screen mode. To use the same window size as the default scenes, copy the
DefaultGameUserSettings.ini file from the support package installation folder to your custom
project folder. For example, copy DefaultGameUserSettings.ini from:

C:\ProgramData\MATLAB\SupportPackages\<MATLABrelease>\toolbox\shared\sim3dprojects\spkg\AutoVrtlEnv\Config

to:

C:\<yourproject>.project\Config

Then, package scenes from the project into an executable again and retry the simulation.

See Also

2 3D Simulation – User's Guide

2-40

Apply Semantic Segmentation Labels to Custom Scenes
The Simulation 3D Camera block provides an option to output semantic segmentation data from a
scene. If you add new scene elements, or assets (such as traffic signs or roads), to a custom scene,
then in the Unreal Editor, you must apply the correct ID to that element. This ID is known as a stencil
ID. Without the correct stencil ID applied, the Simulation 3D Camera block does not recognize the
scene element and does not display semantic segmentation data for it.

For example, this To Video Display window shows a stop sign that was added to a custom scene. The
Semantic Segmentation Display window does not display the stop sign, because the stop sign is
missing a stencil ID.

 Apply Semantic Segmentation Labels to Custom Scenes

2-41

To apply a stencil ID label to a scene element, follow these steps:

1 Open the Unreal Editor from a Simulink model that is configured to simulate in the 3D
environment. For more details, see “Customize Unreal Engine Scenes Using Simulink and Unreal
Editor” on page 2-32.

2 In the editor window, select the scene element with the missing stencil ID.
3 On the Details pane on the right, in the Rendering section, select Render CustomDepth Pass.

2 3D Simulation – User's Guide

2-42

If you do not see this option, click the Show Advanced expander to show all
rendering options.

4 In the CustomDepth Stencil Value box, enter the stencil ID that corresponds to the asset. If
you are adding an asset to a scene from the UAV Toolbox Interface for Unreal Engine Projects
support package, then enter the stencil ID corresponding to that asset type, as shown in the
table. If you are adding assets other than the ones shown, then you can assign them to unused
IDs. If you do not assign a stencil ID to an asset, then the Unreal Editor assigns that asset an ID
of 0.

Note The Simulation 3D Camera block does not support the output of semantic segmentation
data for lane markings. Even if you assign a stencil ID to lane markings, the block ignores this
setting.

ID Type
0 None/default
1 Building
2 Not used
3 Other
4 Not used
5 Pole
6 Not used
7 Road
8 Sidewalk
9 Vegetation
10 Vehicle
11 Not used
12 Generic traffic sign
13 Stop sign
14 Yield sign
15 Speed limit sign
16 Weight limit sign
17-18 Not used
19 Left and right arrow warning sign
20 Left chevron warning sign
21 Right chevron warning sign
22 Not used
23 Right one-way sign
24 Not used

 Apply Semantic Segmentation Labels to Custom Scenes

2-43

ID Type
25 School bus only sign
26-38 Not used
39 Crosswalk sign
40 Not used
41 Traffic signal
42 Curve right warning sign
43 Curve left warning sign
44 Up right arrow warning sign
45-47 Not used
48 Railroad crossing sign
49 Street sign
50 Roundabout warning sign
51 Fire hydrant
52 Exit sign
53 Bike lane sign
54-56 Not used
57 Sky
58 Curb
59 Flyover ramp
60 Road guard rail
61-66 Not used
67 Deer
68-70 Not used
71 Barricade
72 Motorcycle
73-255 Not used

For example, for a stop sign that is missing a stencil ID, enter 13.

Tip If you are adding stencil ID for scene elements of the same type, you can copy (Ctrl+C) and
paste (Ctrl+V) the element with the added stencil ID. The copied scene element includes the
stencil ID.

5 Visually verify that the correct stencil ID shows by using the custom stencil view. In the top-left

corner of the editor window, click and select Buffer Visualization > Custom Stencil.
The scene displays the stencil IDs specified for each scene element. For example, if you added
the correct stencil ID to a stop sign (13) then the editor window, the stop sign displays a stencil
ID value of 13.

2 3D Simulation – User's Guide

2-44

• If you did not set a stencil ID value for a scene element, then the element appears in black
and displays no stencil ID.

• If you did not select CustomDepth Stencil Value, then the scene element does not appear at
all in this view.

6 Turn off the custom stencil ID view. In the top-left corner of the editor window, click Buffer
Visualization and then select Lit.

7 If you have not already done so, set up your Simulink model to display semantic segmentation
data from a Simulation 3D Camera block. For an example setup, see “Depth and Semantic
Segmentation Visualization Using Unreal Engine Simulation” on page 2-18.

8 Run the simulation and verify that the Simulation 3D Camera block outputs the correct data. For
example, here is the Semantic Segmentation Display window with the correct stencil ID applied
to a stop sign.

 Apply Semantic Segmentation Labels to Custom Scenes

2-45

See Also
Simulation 3D Scene Configuration | Simulation 3D Camera | Simulation 3D UAV Vehicle

More About
• “Depth and Semantic Segmentation Visualization Using Unreal Engine Simulation” on page 2-18
• “Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox)

2 3D Simulation – User's Guide

2-46

Stereo Visual SLAM for UAV Navigation in 3D Simulation
Visual SLAM is the process of calculating the position and orientation of a camera with respect to its
surroundings while simultaneously mapping the environment. Developing a visual SLAM algorithm
and evaluating its performance in varying conditions is a challenging task. One of the biggest
challenges is generating the ground truth of the camera sensor, especially in outdoor environments.
The use of simulation enables testing under a variety of scenarios and camera configurations while
providing precise ground truth.

This example demonstrates the use of Unreal Engine® simulation to develop a visual SLAM
algorithm for a UAV equipped with a stereo camera in a city block scenario. For more information
about the implementation of the visual SLAM pipeline for a stereo camera [1] on page 2-0 , see the
“Stereo Visual Simultaneous Localization and Mapping” (Computer Vision Toolbox) example.

Set Up Simulation Environment

First, set up a scenario in the simulation environment that can be used to test the visual SLAM
algorithm. Use a scene depicting a typical city block with a UAV as the vehicle under test.

Next, select a trajectory for the UAV to follow in the scene. You can follow the “Select Waypoints for
Unreal Engine Simulation” (Automated Driving Toolbox) example to interactively select a sequence of
waypoints and then use the helperSelectSceneWaypoints function to generate a reference
trajectory for the UAV. This example uses a recorded reference trajectory as shown below:

% Load reference path
data = load('uavStereoSLAMData.mat');

pos = data.pos; % Position
orientEuler = data.orientEuler; % Orientation

 Stereo Visual SLAM for UAV Navigation in 3D Simulation

2-47

The UAVVisualSLAMIn3DSimulation Simulink® model is configured with the US City Block scene
using the Simulation 3D Scene Configuration block. The model places a UAV on the scene using the
Simulation 3D UAV Vehicle block. A stereo camera consisting of two Simulation 3D Camera blocks is
attached to the UAV. In the dialog box of the Simulation 3D Camera block, use the Mounting tab to
adjust the placement of the camera. Use the Parameters tab to configure properties of the camera to
simulate different cameras. To estimate the intrinsics of the stereo camera that you want to simulate,
use the “Using the Stereo Camera Calibrator App” (Computer Vision Toolbox) app.

% Stereo camera parameters
focalLength = [1109, 1109]; % In pixels
principalPoint = [640, 360]; % In pixels [x, y]

2 3D Simulation – User's Guide

2-48

imageSize = [720, 1280]; % In pixels [mrows, ncols]
baseline = 0.5; % In meters

% Open the model
modelName = 'UAVVisualSLAMIn3DSimulation';
open_system(modelName);

Implement the Stereo Visual SLAM Algorithm

The Helper Stereo Visual SLAM System block implements the stereo visual SLAM pipeline, consisting
of the following steps:

• Map Initialization: The pipeline starts by initializing the map of 3-D points from a pair of images
generated from the stereo camera using the disparity map. The left image is stored as the first key
frame.

• Tracking: Once a map is initialized, for each new stereo pair, the pose of the camera is estimated
by matching features in the left image to features in the last key frame. The estimated camera
pose is refined by tracking the local map.

 Stereo Visual SLAM for UAV Navigation in 3D Simulation

2-49

• Local Mapping: If the current left image is identified as a key frame, new 3-D map points are
computed from the disparity of the stereo pair. At this stage, bundle adjustment is used to
minimize reprojection errors by adjusting the camera pose and 3-D points.

• Loop Closure: Loops are detected for each key frame by comparing it against all previous key
frames using the bag-of-features approach. Once a loop closure is detected, the pose graph is
optimized to refine the camera poses of all the key frames.

For the implementation details of the algorithm, see the “Stereo Visual Simultaneous Localization and
Mapping” (Computer Vision Toolbox) example.

Run Stereo Visual SLAM Simulation

Simulate the model and visualize the results. The Video Viewer block displays the stereo image
output. The Point Cloud Player displays the reconstructed 3-D map with the estimated camera
trajectory.

if ~ispc
 error("Unreal Engine Simulation is supported only on Microsoft" + char(174) + " Windows" + char(174) + ".");
end

% Run simulation
sim(modelName);

2 3D Simulation – User's Guide

2-50

Loop edge added between keyframe: 5 and 356
Loop edge added between keyframe: 3 and 356
Loop edge added between keyframe: 4 and 358
Loop edge added between keyframe: 5 and 358
Loop edge added between keyframe: 6 and 358

 Stereo Visual SLAM for UAV Navigation in 3D Simulation

2-51

Close the model.

close_system(modelName);

References

[1] Mur-Artal, Raul, and Juan D. Tardós. "ORB-SLAM2: An open-source SLAM system for monocular,
stereo, and RGB-D cameras." IEEE Transactions on Robotics 33, no. 5 (2017): 1255-1262.

2 3D Simulation – User's Guide

2-52

Prepare Custom UAV Vehicle Mesh for the Unreal Editor
This example shows you how to create a vehicle mesh that is compatible with the project in the UAV
Toolbox Interface for Unreal Engine Projects support package. You can specify the mesh in the
Simulation 3D UAV Vehicle block to visualize the vehicle in the Unreal Editor when you run a
simulation.

Before you start, install the UAV Toolbox Interface for Unreal Engine Projects support package. See
“Install Support Package for Customizing Scenes” on page 2-28.

To create a compatible custom vehicle mesh, follow these workflow steps.

Step Description
“Set Up Bone Hierarchy”
on page 2-53

In a 3D creation environment, set up the vehicle mesh bone hierarchy
and specify part names.

“Assign Materials” on
page 2-55

Optionally, assign materials to the vehicle parts.

“Export Mesh and
Armature” on page 2-59

Export the vehicle mesh and armature in the .fbx file format.

“Import Mesh to Unreal
Editor” on page 2-61

Import the vehicle mesh into the Unreal Editor.

“Set Block Parameters”
on page 2-62

Set up the Simulation 3D UAV Vehicle block parameters.

Note To create the mesh, this example uses the 3D creation software Blender® Version 2.80.

Set Up Bone Hierarchy
1 Import a vehicle mesh into a 3D modeling tool, such as Blender.
2 To ensure that this mesh is compatible with the animation components in the UAV Toolbox

Interface for Unreal Engine Projects support package, use this naming convention for the vehicle
parts in the mesh.

Vehicle Part Name
UAV body UAV_Body
UAV motor UAV_Motorn
UAV rotor blade UAV_Rotorn
Camera pivot point UAV_CameraPivot
Camera arm UAV_CameraArm

3 Set the UAV body object, UAV_Body, as the parent of the other UAV objects.

 Prepare Custom UAV Vehicle Mesh for the Unreal Editor

2-53

4 Set each UAV_Motorn objects as the parent of the corresponding UAV_Rotorn object.

5 Set the UAV_CameraArm object as the parent of the UAV_CameraPivot object.

2 3D Simulation – User's Guide

2-54

Assign Materials
You can optionally assign material slots to the vehicle parts. In this example, the mesh uses one
material for the body, one for the six motors, and one for the six rotors.

 Prepare Custom UAV Vehicle Mesh for the Unreal Editor

2-55

1 Create and assign material slots to the vehicle chassis. Confirm that the first vehicle slot
corresponds to the UAV_Body object. For example, this image shows the hierarchy in Blender.

2 3D Simulation – User's Guide

2-56

 Prepare Custom UAV Vehicle Mesh for the Unreal Editor

2-57

2 Create and assign material slots to the motors.

3 Create and assign material slots to the rotors.

2 3D Simulation – User's Guide

2-58

Export Mesh and Armature
Export the mesh and armature in the .fbx file format. For example, in Blender:

1 On the Object Types pane, select Armature and Mesh.

 Prepare Custom UAV Vehicle Mesh for the Unreal Editor

2-59

2 On the Transform pane, set:

• Scale to 1.00
• Apply Scalings to All Local
• Forward to X Forward
• Up to Z Up

Select Apply Unit.

3 On the Geometry pane:

• Set Smoothing to Face
• Select Apply Modifiers

4 On the Armature pane, set:

• Primary Bone Axis to X Axis
• Secondary Bone Axis to Z Axis

Select Export FBX.

2 3D Simulation – User's Guide

2-60

Import Mesh to Unreal Editor
1 Open the Unreal Engine AutoVrtlEnv.uproject project in the Unreal Editor.
2 In the editor, import the FBX® file as a skeletal mesh. Assign the UAV_Skeleton asset to the

Skeleton parameter.

 Prepare Custom UAV Vehicle Mesh for the Unreal Editor

2-61

Set Block Parameters
In your Simulink model, set these Simulation 3D UAV Vehicle block parameters:

• Type to Custom.
• Path to the path in the Unreal Engine project that contains the imported mesh.

See Also
Simulation 3D Scene Configuration | Simulation 3D UAV Vehicle

2 3D Simulation – User's Guide

2-62

More About
• “Unreal Engine Simulation Environment Requirements and Limitations” on page 2-5
• “Coordinate Systems for Unreal Engine Simulation in UAV Toolbox” on page 2-9

External Websites
• Blender

 Prepare Custom UAV Vehicle Mesh for the Unreal Editor

2-63

https://www.blender.org/

3D Data Processing – User's Guide

3

Choose a 3-D Coordinate System
Coordinate systems represent position on the Earth using coordinates. The toolbox provides functions
to transform coordinates between geodetic, east-north-up (ENU), and north-east-down (NED).

Global system like geodetic system describe the position of an object using a triplet of coordinates.
Local systems such as ENU and NED systems require two triplets of coordinates: one triplet
describes the location of the origin, and the other triplet describes the location of the object with
respect to the origin.

When you work with 3-D coordinate systems, you must specify an ellipsoid model that approximates
the shape of the Earth. All of the sample coordinates on this page use the World Geodetic System of
1984 (WGS84).

Geodetic Coordinates
A geodetic system uses the coordinates [lat lon alt] to represent position relative to a reference
ellipsoid.

• lat, the latitude, originates at the equator. More specifically, the latitude of a point is the angle a
normal to the ellipsoid at that point makes with the equatorial plane, which contains the center
and equator of the ellipsoid. An angle of latitude is within the range [–90°, 90°]. Positive
latitudes correspond to north and negative latitudes correspond to south.

• lon, the longitude, originates at the prime meridian. More specifically, the longitude of a point is
the angle that a plane containing the ellipsoid center and the meridian containing that point
makes with the plane containing the ellipsoid center and prime meridian. Positive longitudes are
measured in a counterclockwise direction from a vantage point above the North Pole. Typically,
longitude is within the range [–180°, 180°] or [0°, 360°].

3 3D Data Processing – User's Guide

3-2

• alt, the ellipsoidal height, is measured along a normal of the reference spheroid.

East-North-Up Coordinates
An east-north-up (ENU) system uses the Cartesian coordinates [xEast yNorth zUp] to represent
position relative to a local origin. The local origin is described by the geodetic coordinates [lat0
lon0 alt0]. Note that the origin does not necessarily lie on the surface of the ellipsoid.

• The positive xEast-axis points east along the parallel of latitude containing lat0.
• The positive yNorth-axis points north along the meridian of longitude containing lon0.
• The positive zUp-axis points upward along the ellipsoid normal.

 Choose a 3-D Coordinate System

3-3

North-East-Down Coordinates
A north-east-down (NED) system uses the Cartesian coordinates [xNorth yEast zDown] to
represent position relative to a local origin. The local origin is described by the geodetic coordinates
[lat0 lon0 alt0]. Typically, the local origin of an NED system is above the surface of the Earth.

• The positive xNorth-axis points north along the meridian of longitude containing lon0.
• The positive yEast-axis points east along the parallel of latitude containing lat0.
• The positive zDown-axis points downward along the ellipsoid normal.

An NED coordinate system is commonly used to specify location relative to a moving aircraft. In this
application, the origin and axes of an NED system change continuously. Note that the coordinates are
not fixed to the frame of the aircraft.

3 3D Data Processing – User's Guide

3-4

Tips
If you are transforming coordinates between ENU and NED systems with the same origin, then you
do not need to specify a reference ellipsoid or the coordinates of the origin.

See Also
enu2lla | lla2enu | lla2ned | ned2lla

References
[1] Guowei, C., B.M. Cheh, and T. H. Lee. Unmanned Rotorcraft Systems. London: Springer-Verlag

London Limited: 2011.

[2] Van Sickle, J. Basic GIS Coordinates. Boca Raton, FL: CRC Press LLC, 2004.

 Choose a 3-D Coordinate System

3-5

Simulink Block Examples

4

Generate Course and Yaw Commands for Orbit Following in
Simulink®

This example shows how to use the UAV Orbit Follower block to generate course and yaw
commands for orbiting a location of interest with a UAV.

Open the model. Click Open Live Script to get a copy of the Simulink® model. This model illustrates
the inputs and the outputs of the block.

You must specify the current UAV pose as an [x;y;z;course] column vector. Typically, the pose is
gathered from telemetry data from the UAV.

Also, specify the orbit center location in xyz-coordinates, orbit radius, turn direction, and lookahead
distance on the path. The lookahead distance is important for tuning the path tracking. Higher values
smooth the path, but lower values can improve tracking of the actual orbit.

open_system("uav_orbit_follower_ex1.slx")

Run the model to get the desired course and yaw for following the orbit. These outputs can be used to
generate commands for a UAV.

sim("uav_orbit_follower_ex1.slx");

4 Simulink Block Examples

4-2

Close the model with:

close_system("uav_orbit_follower_ex1.slx", 0);

 Generate Course and Yaw Commands for Orbit Following in Simulink®

4-3

UAV Obstacle Avoidance in Simulink
This model implements waypoint following along with obstacle avoidance on a UAV in a simulated
scenario. The model takes a set of waypoints and uses the 3D VFH+ algorithm to provide an obstacle-
free path.

Create UAV Scenario with Custom Lidar Sensor and Obstacles

Create Scenario

Create a UAV scenario and set its local origin.

Scenario = uavScenario("UpdateRate",100,"ReferenceLocation",[0 0 0]);

Add a marker to indicate the start pose of the UAV.

addMesh(Scenario,"cylinder",{[0 0 1] [0 .01]},[0 1 0]);

Define UAV Platform

Specify the initial position and orientation of the UAV in the north-east-down (NED) frame.

InitialPosition = [0 0 -7];
InitialOrientation = [0 0 0];

Create a UAV platform in the scenario.

platUAV = uavPlatform("UAV",Scenario, ...
 "ReferenceFrame","NED", ...
 "InitialPosition",InitialPosition, ...
 "InitialOrientation",eul2quat(InitialOrientation));

Add a quadrotor mesh for visualization.

updateMesh(platUAV,"quadrotor",{1.2},[0 0 1],eul2tform([0 0 pi]));

Create and Mount Sensor Model

Specify the lidar resolution.

AzimuthResolution = 0.5;
ElevationResolution = 2;

Specify the lidar range.

MaxRange = 7;
AzimuthLimits = [-179 179];
ElevationLimits = [-15 15];

Create a statistical sensor model to generate point clouds for the lidar sensor.

LidarModel = uavLidarPointCloudGenerator("UpdateRate",10, ...
 "MaxRange",MaxRange, ...
 "RangeAccuracy",3, ...
 "AzimuthResolution",AzimuthResolution, ...
 "ElevationResolution",ElevationResolution, ...
 "AzimuthLimits",AzimuthLimits, ...
 "ElevationLimits",ElevationLimits, ...
 "HasOrganizedOutput",true);

4 Simulink Block Examples

4-4

Create a lidar sensor and mount the sensor on the quadrotor.

uavSensor("Lidar",platUAV,LidarModel, ...
 "MountingLocation",[0 0 -0.4], ...
 "MountingAngles",[0 0 180]);

Preview the scenario using the show3D function.

show3D(Scenario);

Add Obstacles to Scenario

Add cuboid obstacles, representing buildings, to the scenario.

ObstaclePositions = [10 0; 20 10; 10 20]; % Locations of the obstacles
ObstacleHeight = 15; % Height of the obstacles
ObstaclesWidth = 3; % Width of the obstacles

for i = 1:size(ObstaclePositions,1)
 addMesh(Scenario,"polygon", ...
 {[ObstaclePositions(i,1)-ObstaclesWidth/2 ObstaclePositions(i,2)-ObstaclesWidth/2; ...
 ObstaclePositions(i,1)+ObstaclesWidth/2 ObstaclePositions(i,2)-ObstaclesWidth/2; ...
 ObstaclePositions(i,1)+ObstaclesWidth/2 ObstaclePositions(i,2)+ObstaclesWidth/2; ...
 ObstaclePositions(i,1)-ObstaclesWidth/2 ObstaclePositions(i,2)+ObstaclesWidth/2], ...
 [0 ObstacleHeight]},0.651*ones(1,3));
end
show3D(Scenario);
legend("Start Position","Obstacles")

 UAV Obstacle Avoidance in Simulink

4-5

Model Overview

The model consists of these main components:

• UAV scenario — Configures the scenario and visualizes the trajectory.
• Waypoint following and obstacle avoidance — Implements waypoint following with

obstacle avoidance.
• Controller and plant — Position controller for the UAV.
• Control Panel — Use this panel to enable or disable obstacle avoidance, as well as alter the

lookahead distance for obstacle avoidance.

Open the model.

open_system("ObstacleAvoidanceDemo.slx");

4 Simulink Block Examples

4-6

UAV Scenario

The scenario blocks configure the scenario and visualize the obstacles, trajectory, and the lidar point
cloud data.

 UAV Obstacle Avoidance in Simulink

4-7

This subsystem contains these blocks:

• UAV Scenario Configuration — Configures the scenario blocks to use the generated scenario for
simulation.

• UAV Scenario Motion Read — Reads the current UAV state from the scenario.
• UAV Scenario Lidar — Reads the point cloud data from the scenario.
• UAV Scenario Motion Write — Updates the new UAV state.
• UAV Scenario Scope — Visualizes the UAV trajectory and lidar point cloud data.

Waypoint Following and Obstacle Avoidance

The Waypoint following and obstacle avoidance subsystem finds the obstacle-free desired
position and the desired yaw according to the current UAV state and point cloud data.

4 Simulink Block Examples

4-8

This subsystem includes these blocks and subsystems:

• Waypoint Follower — Computes a lookahead point for the UAV in the direction of the next
waypoint.

• Obstacle Avoidance — Uses the 3D VFH+ algorithm to calculate the obstacle-free direction and
yaw for a collision-free flight, and updates the lookahead point computed by the Waypoint
Follower block.

• Conversion — This subsystem controls the frequency at which obstacle avoidance is used during
the flight, and other data type and transform conversions.

• Lookahead Distance — Constant block, the value of which is multiplied by the unit vector in the
desired direction, and then added to the current UAV position to compute the desired position.

• Enable Obstacle Avoidance — This subsystem enables or disables obstacle avoidance.
• Waypoints — The set of waypoints through which the UAV is expected to fly.

Specify the waypoints for the UAV.

Waypoints = [InitialPosition; 0 20 -7; 20 20 -7; 20 0 -7];

Add markers to indicate the waypoints.

for i = 2:size(Waypoints,1)
 addMesh(Scenario,"cylinder",{[Waypoints(i,2) Waypoints(i,1) 1] [0 0.1]},[1 0 0]);
end
show3D(Scenario);
hold on
plot3([InitialPosition(1,2); Waypoints(:,2)],[InitialPosition(1,2); Waypoints(:,1)],[-InitialPosition(1,3); -Waypoints(:,3)],"-g")
legend(["Start Position","Obstacles","","","Waypoints","","","Direct Path"])

 UAV Obstacle Avoidance in Simulink

4-9

Controller and plant

The Controller and plant subsystem generates the control commands and updates the UAV
state based on the lookahead point.

This subsystem includes these blocks:

• Controller — This subsystem computes the control commands (roll, pitch, yaw, and thrust) to
move the UAV towards the desired position. It uses multiple PID loops to implement position
control.

• Quadrotor Plant — This Guidance Model block updates the UAV state using the control
commands.

4 Simulink Block Examples

4-10

• Conversion — This subsystem extracts the position and orientation from the UAV state, and
performs data and coordinate transforms for visualization.

Specify the controller parameters. These parameters are based on a hit-and-trial approach, and can
be tuned for a smoother flight.

% Proportional Gains
Px = 6;
Py = 6;
Pz = 6.5;

% Derivative Gains
Dx = 1.5;
Dy = 1.5;
Dz = 2.5;

% Integral Gains
Ix = 0;
Iy = 0;
Iz = 0;

% Filter Coefficients
Nx = 10;
Ny = 10;
Nz = 14.4947065605712;

Specify gravity, drone mass, and sample time for the controller and plant blocks.

UAVSampleTime = 0.001;
Gravity = 9.81;
DroneMass = 0.1;

Control Panel

The switch enables or disables the updates to the lookahead point from the Obstacle Avoidance block.

The slider updates the lookahead distance used to compute the lookahead point.

• At greater lookahead distances, UAV flight is faster, but has greater risk of colliding with an
obstacle.

• At lower values, the flight is slower, but has a lower risk of colliding with an obstacle.

Simulate Model

Configure and run the model, and observe the motion of the UAV.

• The UAV flies through the waypoints while avoiding obstacles, and then the simulation stops.

 UAV Obstacle Avoidance in Simulink

4-11

• Alter the lookahead distance to change the UAV speed.
• Change the parameters of the Obstacle Avoidance block and note the change in the flight path.

out = sim("ObstacleAvoidanceDemo.slx");

Visualize Obstacle-Free UAV trajectory

Plot the actual UAV trajectory and the waypoints to show the effect of obstacle avoidance on the UAV
flight.

hold on
points = squeeze(out.trajectoryPoints(1,:,:))';
plot3(points(:,2),points(:,1),-points(:,3),"-r");
legend(["Start Position","Obstacles","","","Waypoints","","","Direct Path","UAV Trajectory"])

4 Simulink Block Examples

4-12

 UAV Obstacle Avoidance in Simulink

4-13

Add GPS Sensor Noise to Multirotor Guidance Model
This example shows how to use a gpsSensor Block to add sensor noise to the position and velocity
output of a guidance model in Simulink®.

Example Model

Open the Simulink model.

open_system("uavGPSModel.slx");

The model uses a Guidance Model block to simulate a multirotor UAV platform. The GPS block adds
noise to the state of the UAV.

Constant values for the roll, pitch, and yaw rate, and a varying value created by a sine wave for the
thrust are inputs to Control port of the Guidance Model. The roll, pitch and yaw rate are set to 0 so
the varying thrust input changes only the height. When setting the controls for the block, check that
the gain values listed in the block are appropriate. The only Environment input for a multirotor UAV
is gravity, specified as 9.81. Bus Creator (Simulink) blocks combine the control inputs and
environment input into their respective busses, with the bus names specified in the Input/Output
Bus Names parameter of the Guidance Model.

Because the GPS block uses discrete states and has separate inputs for Position and Velocity, the
model uses a Rate Transition block to convert the continuous signal from the Guidance Model block
into a bus containing two discrete signals. It extracts the WorldPosition and WorldVelocity
signals from the bus and transposes them before using them as input to the GPS block. Scope blocks
display the true vertical position and vertical velocity of the UAV alongside its GPS-affected vertical
position and vertical velocity readings.

4 Simulink Block Examples

4-14

Run the Model

Run the model. The Height Position and Height Velocity scopes show the effect the GPS
block has on the original values of the position and velocity signals, retrospectively.

 Add GPS Sensor Noise to Multirotor Guidance Model

4-15

Simulate GPS Sensor Noise
This example shows how to use the GPS block to add GPS sensor noise to position and velocity inputs
in Simulink®.

Examine Model

Open the Simulink model.

open_system("GPSNoiseModel.slx");

This model generates the X, Y, Z values, for both position and velocity, as individual sine waves and
combines them using Mux blocks. Because the GPS block requires discrete signals, the combined
position and velocity pass through Rate Transition blocks to the inputs to the Position and Velocity
ports of the GPS block. The GPS block has default parameter settings except for the Vertical
position accuracy, which is set to 1.5 due to the scale of the position and velocity.

Compare the outputs of the GPS block against the true signal values using Scope blocks. To do this
for position, the local position coordinates will need to be converted to LLA coordinates. Use
ned2lla function in the MATLAB Function block to convert the NED coordinates to LLA coordinates.

A MATLAB Function block uses the ned2lla function to convert the local position coordinates of the
true signal values to geodetic coordinates. The model then plots the outputs of the GPS block against
the true signal values.

Run Model

Run the model. The output scopes show the effect of the noise from the GPS sensor on the original
and velocity outputs.

4 Simulink Block Examples

4-16

See Also
Functions
ned2lla

Blocks
GPS | Rate Transition

 Simulate GPS Sensor Noise

4-17

Simulate UAV Scenario Using Scenario Blocks
This example shows how to use the UAV scenario blocks to simulate a scenario in Simulink®.

Create Scenario

Initialize your UAV scenario with meshes and uavPlatform objects for the UAV scenario blocks to
use.

% Initialize the scenario
scene = uavScenario(UpdateRate=100,ReferenceLocation=[0 0 0]);

%Create a ground for visualization
addMesh(scene,"polygon",{[-15 -15; 15 -15; 15 15; -15 15] [-0.5 0]},[0.3 0.3 0.3]);

% Add cylinder meshes to scan with lidar sensor
addMesh(scene,"cylinder",{[-5 5 2] [0 12]},[0 1 0]);
addMesh(scene,"cylinder",{[5 5 2] [0 12]},[0 1 0]);
addMesh(scene,"cylinder",{[5 -5 2] [0 12]},[0 1 0]);

Create one UAV platform to be controlled and another to be stationary.

% Platform/UAV initial position and orientation
initpos = [0 0 -5]; % NED Frame
initori = [0 0 0];

% Add UAV Platforms to the Scenario and scale them for easier visualization
platform = uavPlatform("platformUAV",scene,ReferenceFrame="NED", ...
 InitialPosition=initpos,InitialOrientation=eul2quat(initori));
platform2 = uavPlatform("platformUAV2",scene,ReferenceFrame="NED", ...
 InitialPosition=[0 7 -11],InitialOrientation=eul2quat(initori));

updateMesh(platform,"quadrotor",{2},[0 0 0],eul2tform([0 0 pi]));
updateMesh(platform2,"quadrotor",{2},[0 0 0],eul2tform([0 0 pi]));

Create a uavSensor with a lidar sensor model, for use in the Simulink simulation, by using the
uavLidarPointCloudGenerator, and attach it to the first UAV platform. Specify the parameters
of the lidar in the UAV Scenario Lidar block, because the model does not load them from the object.

LidarModel = uavLidarPointCloudGenerator;
uavSensor("Lidar",platform,LidarModel,MountingLocation=[0 0 1],MountingAngles=[0 0 180]);

Configure the Scenario

open_system("UAVScenarioModel.slx")

4 Simulink Block Examples

4-18

The UAV Scenario Configuration block is essential for simulating the UAV scenario in Simulink, and
must execute first. Place it in the model and set the MATLAB or model workspace variable name
to the name of your scenario. Whenever you make changes to the scenario scene in MATLAB, open
this block and click Refresh to reflect those changes in Simulink. Change the sample time and the
bus and signal names as necessary.

 Simulate UAV Scenario Using Scenario Blocks

4-19

Write to Motion Bus

The UAV Scenario Motion Write block updates the motion bus of the first platform UAV. This updates
the position of the UAV in the figure from the UAV Scenario Scope block. Open the UAV Scenario
Motion Write block parameters and click Select to configure the block to update platformUAV. This
is the platform UAV that we will be updating with this block.

4 Simulink Block Examples

4-20

This example uses a multirotor guidance model with constant inputs to determine the next position to
write to the motion bus. However, you can use any kind of controller to update the motion bus of the
platform if you can extract inputs to use in the UAV Scenario Motion Write block.

 Simulate UAV Scenario Using Scenario Blocks

4-21

Read from Motion Bus

After the UAV Scenario Motion Write block writes to the motion bus, the UAV Scenario Motion Read
block reads the data from the motion bus. A controller can use this data to determine the inputs to
your plant. This example does not use a controller, instead reading the outputs into Display blocks.
Open UAV Scenario Motion Write block parameters and click Select to again choose platformUAV.

4 Simulink Block Examples

4-22

Get Transform

The UAV Scenario Get Transform block gets the transformation matrix between the two UAVs. Open
the UAV Scenario Get Transform block parameters and set the Source Frame parameter to
platformUAV and the Target Frame parameter to platformUAV2.

 Simulate UAV Scenario Using Scenario Blocks

4-23

In this example, a Display block shows the transfomation matrix. However a controller can have many
applications for the transformation data.

View and Simulate Lidar

The UAV Scenario Lidar block enables the use of the created lidar sensor in the scenario. Open the
UAV Scenario Lidar block parameters and specify the Sensor name parameter as platformUAV/
Lidar by clicking Select. You can edit the settings of the lidar by specifying parameters in the block.

4 Simulink Block Examples

4-24

To visualize the lidar readings and the motion of the UAV, connect the UAV Scenario Lidar block to a
UAV Scenario Scope block. You must create a port by enabling the visualization toggle for the sensors
you want to connect. If you recently added a lidar sensor, but do not see it in the table, open the UAV
Scenario Configuration block parameters and click Refresh, and open the UAV Scenario Lidar block
parameters and click Refresh sensor table.

 Simulate UAV Scenario Using Scenario Blocks

4-25

4 Simulink Block Examples

4-26

Enabling visualization of the sensor enables a port on the UAV Scenario Scope block with the name of
the platform and its sensor.

Select Show animation in the UAV Scenario Scope block to view the scenario. Run the model to see
the animation.

 Simulate UAV Scenario Using Scenario Blocks

4-27

4 Simulink Block Examples

4-28

Simulate INS Block
In this example, you simulate an INS block by using the pose information of a vehicle undertaking a
left-turn trajectory.

Load Vehicle Trajectory Data

First, you load the trajectory information of the vehicle to the workspace.

load leftTurnTrajectory.mat

You notice that seven new variables appear in MATLAB workspace.

• dt — The time step size of 0.4 seconds.
• t — The total time span of 7.88 seconds.
• vehPos, vehVel, vehAcc, vehOrient, vehAngVel — The history of position, velocity,

acceleration, orientation, and angular velocity, each specified as a 198-by-3 matrix, where 198 is
the total number of steps.

Open Simulink Model

Next, you open the Simulink model.

open simulateINS.slx

The model contains three parts: the data importing part, the INS block, and the scope block to
compare the true positions with the INS outputs.

The data importing part imports the vehicle trajectory data into Simulink using the From Workspace
(Simulink) block. You use a helper function helperFromWorkspace, attached in the example folder,
to convert the trajectory data into a structure format required by the From Workspace block.

Run the Model

Run the Simulink model.

resulsts = sim('simulateINS');

Click on the scope block and see the results. The INS block position outputs closely follow the truth
with the addition of noise.

 Simulate INS Block

4-29

4 Simulink Block Examples

4-30

Lidar and Radar Fusion in an Urban Air Mobility Scenario
In this example you learn how to use multi-object trackers to track various Unmanned Air Vehicles
(UAVs) in an urban environment. You create a scene using the uavScenario object based on building
and terrain data available online. You use lidar and radar sensor models to generate synthetic sensor
data. Finally, you use various tracking algorithms to estimate the state of all UAVs in the scene.

UAVs are designed for a wide range of operations. Many applications are set in urban environments,
such as drone package delivery, air taxis, and power line inspection. The safety of these operations
becomes critical as the number of applications grows, making controlling the urban airspace a
challenge.

Create an urban air mobility scenario

In this example, you use the terrain and building data of Boulder, CO. The Digital Terrain Elevation
Data (DTED) file is downloaded from the "SRTM Void Filled" data set available from the U.S.
Geological Survey. The building data, saved in building.mat, is downloaded from OpenStreetMap
available online. You create a UAV scenario using this data.

dtedfile = "n39_w106_3arc_v2.dt1";
buildingfile = "building.mat";
scene = createScenario(dtedfile,buildingfile);

Next, you add a few UAVs to the scenario.

To model a package delivery operation, you define a trajectory leaving from the roof of a building and
flying to another building. The trajectory is composed of three legs. The quadrotor takes off vertically,
then flies toward the next delivery destination, and finally lands vertically on the roof.

waypointsA = [1895 90 20; 1915 108 35; 1900 115 20];
timeA = [0 25 50];
trajA = waypointTrajectory(waypointsA, "TimeOfArrival", timeA, "ReferenceFrame", "ENU", "AutoBank", true);
uavA = uavPlatform("UAV", scene, "Trajectory", trajA, "ReferenceFrame", "ENU");
updateMesh(uavA, "quadrotor", {5}, [0 1 1], eye(4));

You add another UAV to model an air taxi flying by. Its trajectory is linear, slightly descending. You
use the fixedwing geometry to model a larger UAV that are suitable to transporting people.

waypointsB = [1940 120 50; 1800 50 20];
timeB = [0 41];
trajB = waypointTrajectory(waypointsB, "TimeOfArrival", timeB, "ReferenceFrame", "ENU", "AutoBank", true);
uavB = uavPlatform("UAV2", scene, "Trajectory", trajB, "ReferenceFrame", "ENU");
updateMesh(uavB, "fixedwing", {10}, [0 1 1], eye(4));

Then you add a quadrotor with a trajectory following the street path. This could represent a UAV
inspecting power grid lines for maintenance purposes.

waypointsC = [1950 60 35; 1900 60 35; 1890 80 35];
timeC = linspace(0,41,size(waypointsC,1));
trajC = waypointTrajectory(waypointsC, "TimeOfArrival", timeC, "ReferenceFrame", "ENU", "AutoBank", true);
uavC = uavPlatform("UAV3", scene, "Trajectory", trajC, "ReferenceFrame", "ENU");
updateMesh(uavC, "quadrotor", {5}, [0 1 1], eye(4));

Finally, you add the ego UAV, a UAV responsible for surveilling the scene and tracking different
moving platforms.

 Lidar and Radar Fusion in an Urban Air Mobility Scenario

4-31

waypointsD = [1900 140 65; 1910 100 65];
timeD = [0 60];
trajD = waypointTrajectory(waypointsD, "TimeOfArrival", timeD, ...
 "ReferenceFrame", "ENU", "AutoBank", true, "AutoPitch", true);
egoUAV = uavPlatform("EgoVehicle", scene, "Trajectory", trajD, "ReferenceFrame", "ENU");
updateMesh(egoUAV, "quadrotor", {5}, [0 0 1], eye(4));

Define UAV sensor suite

Mount sensors on the ego vehicle. You use a lidar puck that is commonly used in automotive [1]. It is
a small sensor that can be attached on a quadrotor. You use the following specification for the lidar
puck:

• Range resolution: 3 cm
• Maximum range: 100 m
• 360 degrees azimuth span with 0.2° resolution
• 30 degrees elevation span with 2° resolution
• Update rate: 10 Hz
• Mount with a 90° tilt to look down

% Mount a lidar on the quadrotor
lidarOrient = [90 90 0];
lidarSensor = uavLidarPointCloudGenerator("MaxRange",100, ...
 "RangeAccuracy", 0.03, ...
 "ElevationLimits", [-15 15], ...
 "ElevationResolution", 2, ...
 "AzimuthLimits", [-180 180], ...
 "AzimuthResolution", 0.2, ...
 "UpdateRate", 10, ...
 "HasOrganizedOutput", false);
lidar = uavSensor("Lidar", egoUAV, lidarSensor, "MountingLocation", [0 0 -3], "MountingAngles",lidarOrient);

Next you add a radar using the radarDataGenerator System object from the Radar Toolbox. To add
this sensor to the UAV platform, you need to define a custom adaptor class. The details are shown in
the “Simulate Radar Sensor Mounted On UAV” on page 1-95 example. In this example, you use the
helperRadarAdaptor class. This class uses the mesh geometry of targets to define cuboid
dimensions for the radar model. The mesh is also used to derive a simple RCS signature for each
target. Inspired from the Echodyne EchoFlight UAV radar [2], the radar configuration is selected as:

• Frequency: 24.45 - 24.65 GHz
• Field of view: 120° azimuth 80° elevation
• Resolution: 2 deg in azimuth, 6° in elevation
• Full scan rate: 1 Hz
• Sensitivity: 0 dBsm at 200 m

Additionally, you configure the radar to output multiple detections per object. Though the radar can
output tracks representing point targets, you want to estimate the extent of the target, which is not
available with the default track output. Therefore, you set the TargetReportFormat property to
Detections so that the radar report crude detections directly.

% Mount a radar on the quadrotor.
radarSensor = radarDataGenerator("no scanning","SensorIndex",1,...
 "FieldOfView",[120 80],...

4 Simulink Block Examples

4-32

 "UpdateRate", 1,...
 'MountingAngles',[0 30 0],...
 "HasElevation", true,...
 "ElevationResolution", 6,...
 "AzimuthResolution", 2, ...
 "RangeResolution", 4, ...
 "RangeLimits", [0 200],...
 'ReferenceRange',200,...
 'CenterFrequency',24.55e9,...
 'Bandwidth',200e6,...
 "TargetReportFormat","Detections",...
 "DetectionCoordinates","Sensor rectangular",...
 "HasFalseAlarms",false,...
 "FalseAlarmRate", 1e-7);

radarcov = coverageConfig(radarSensor);
radar = uavSensor("Radar",egoUAV,helperRadarAdaptor(radarSensor));

Define tracking system

Lidar point cloud processing

Lidar sensors return point clouds. To fuse the lidar output, the point cloud must be clustered to
extract object detections. Segment out the terrain using the segmentGroundSMRF function from
Lidar Toolbox. The remaining point cloud is clustered, and a simple threshold is applied to each
cluster mean elevation to filter out building detections. Fit each cluster with a cuboid to extract a
bounding box detection. The helper class helperLidarDetector available in this example has the
implementation details.

Lidar cuboid detections are formatted using the objectDetection object. The measurement state
for these detections is x, y, z, L, W, H, q0, q1, q2, q3 , where:

• x, y, z are the cuboid center coordinates along the East, North, and Up axes of the scenario,
respectively.

• L, W, H are the length, width, and height of the cuboid, respectively.
• q = q0 + q1 . i + q2 . j + q3 . k is the quaternion defining the orientation of the cuboid with

respect to the ENU axes.

lidarDetector = helperLidarDetector(scene)

lidarDetector =
 helperLidarDetector with properties:

 MaxWindowRadius: 3
 GridResolution: 1.5000
 SegmentationMinDistance: 5
 MinDetectionsPerCluster: 2
 MinZDistanceCluster: 20
 EgoVehicleRadius: 10

Lidar tracker

You use a point target tracker, trackerJPDA, to track the lidar bounding box detections. A point
tracker assumes that each UAV can generate at most one detection per sensor scan. This assumption
is valid because you have clustered the point cloud into cuboids. To setup a tracker, you need to

 Lidar and Radar Fusion in an Urban Air Mobility Scenario

4-33

define the motion model and the measurement model. In this example, you model the dynamics of
UAVs using an augmented constant velocity model. The constant velocity model is sufficient to track
trajectories consisting of straight flight legs or slowly varying segments. Moreover, assume the
orientation of the UAV is constant and assume the dimensions of the UAVs are constant. As a result,
the track state and state transition equations are X = x, vx , y, vy , z, vz , L, W, H, q0, q1, q2, q3 and

Xk + 1 =

1 ts 0 . . 0
0 1 0 . .
. . 1 ts . .
. . 1 0 0
. . 1 ts
0 . . . 0 1

03 03

03 I3 03x4
03 04x3 I4

Xk + Qk

Here, vx, vy, vz are the cuboid velocity vector coordinates along the scenario ENU axes. You track
orientation using a quaternion because of the discontinuity of Euler angles when using tracking
filters. ts , the time interval between updates k and k+1, is equal to 0.1 seconds. Lastly, Qk is the
additive process noise that captures the modeling inaccuracy.

The inner transition matrix corresponds to the constant velocity model. You define an augmented
state version of constvel and cvmeas to account for the additional constant states. The details are
implemented in the supporting functions initLidarFilter, augmentedConstvel,
augmentedConstvelJac, augmentedCVmeas, and augmentedCVMeasJac in the end of the
example.

lidarJPDA = trackerJPDA('TrackerIndex',2,...
 'AssignmentThreshold',[70 150],...
 'ClutterDensity',1e-16,...
 'DetectionProbability',0.99,...
 'DeletionThreshold',[10 10],... Delete lidar track if missed for 1 second
 'ConfirmationThreshold',[4 5],...
 'FilterInitializationFcn',@initLidarFilter)

lidarJPDA =
 trackerJPDA with properties:

 TrackerIndex: 2
 FilterInitializationFcn: @initLidarFilter
 MaxNumEvents: Inf
 EventGenerationFcn: 'jpdaEvents'
 MaxNumTracks: 100
 MaxNumDetections: Inf
 MaxNumSensors: 20
 TimeTolerance: 1.0000e-05

 OOSMHandling: 'Terminate'

 AssignmentThreshold: [70 150]
 InitializationThreshold: 0
 DetectionProbability: 0.9900
 ClutterDensity: 1.0000e-16

4 Simulink Block Examples

4-34

 TrackLogic: 'History'
 ConfirmationThreshold: [4 5]
 DeletionThreshold: [10 10]
 HitMissThreshold: 0.2000

 HasCostMatrixInput: false
 HasDetectableTrackIDsInput: false
 StateParameters: [1×1 struct]

 NumTracks: 0
 NumConfirmedTracks: 0

Radar tracker

In this example, you assume the radar returns are preprocessed such that only returns from moving
objects are preserved, that is no returns from the ground or the buildings. The radar measurement
state is x, vx , y, vy , z, vz . The radar resolution is fine enough to generate multiple returns per UAV
target and its detections should not be fed directly to a point target tracker. There are two possible
approaches to track with the high-resolution radar detections. One way, you can cluster the
detections and augment the state with dimensions and orientation constants as done previously with
the lidar cuboids. On the other way, you can feed the detections to an extended target tracker
adopted in this example by using a GGIW-PHD tracker. This tracker estimates the extent of each
target using an inverse Wishart distribution, whose expectation is a 3-by-3 positive definite matrix,
representing the extent of a target as a 3D ellipse. This second approach is preferable because there
aren't too many detections per object and clustering is less accurate than extended-target tracking

To create a GGIW-PHD tracker, you first define the tracking sensor configuration for each sensor
reporting to the tracker. In this case, you only need to define the configuration for one radar. When
the radar mounting platform is moving, you need to update this configuration with the current radar
pose before each tracker step. Next, you define a filter initialization function based on the sensor
configuration. Finally, you construct a trackerPHD object and increase the partitioning threshold to
capture the dimensions of objects tracked in this example. The implementation details are shown at
the end of the example in the supporting function createRadarTracker.

radarPHD = createRadarTracker(radarSensor, egoUAV)

radarPHD =
 trackerPHD with properties:

 TrackerIndex: 1
 SensorConfigurations: {[1×1 trackingSensorConfiguration]}
 PartitioningFcn: @(dets)partitionDetections(dets,threshold(1),threshold(2),'Distance','euclidean')
 MaxNumSensors: 20
 MaxNumTracks: 1000

 AssignmentThreshold: 50
 BirthRate: 1.0000e-03
 DeathRate: 1.0000e-06

 ExtractionThreshold: 0.8000
 ConfirmationThreshold: 0.9900
 DeletionThreshold: 0.1000
 MergingThreshold: 50
 LabelingThresholds: [1.0100 0.0100 0]

 Lidar and Radar Fusion in an Urban Air Mobility Scenario

4-35

 StateParameters: [1×1 struct]
 HasSensorConfigurationsInput: true
 NumTracks: 0
 NumConfirmedTracks: 0

Track fusion

The final step in creating the tracking system is to define a track fuser object to fuse lidar tracks and
radar tracks. You use the 13-dimensional state of lidar tracks as the fused state definition.

radarConfig = fuserSourceConfiguration('SourceIndex',1,...
 'IsInitializingCentralTracks',true);

lidarConfig = fuserSourceConfiguration('SourceIndex',2,...
 'IsInitializingCentralTracks',true);

fuser = trackFuser('SourceConfigurations',{radarConfig,lidarConfig},...
 'ProcessNoise',blkdiag(2*eye(6),1*eye(3),0.2*eye(4)),...
 'HasAdditiveProcessNoise',true,...
 'AssignmentThreshold',200,...
 'ConfirmationThreshold',[4 5],...
 'DeletionThreshold',[5 5],...
 'StateFusion','Cross',...
 'StateTransitionFcn',@augmentedConstvel,...
 'StateTransitionJacobianFcn',@augmentedConstvelJac);

Visualization

You use a helper class to visualize the scenario. This helper class utilizes the uavScenario
visualization capabilities and the theaterPlot plotter to represent detection and track information.

The display is divided into 5 tiles, showing respectively, the overall 3D scene, three chase cameras for
three UAVs, and the legend.

viewer = helperUAVDisplay(scene);

4 Simulink Block Examples

4-36

Simulate the scenario

You run the scenario and visualize the results of the tracking system. The true pose of each target as
well as the radar, lidar, and fused tracks are saved for off-line metric analysis.

setup(scene);
s = rng;
rng(2021);

numSteps = scene.StopTime*scene.UpdateRate;
truthlog = cell(1,numSteps);
radarlog = cell(1,numSteps);
lidarlog = cell(1,numSteps);
fusedlog = cell(1,numSteps);
logCount = 0;

while advance(scene)
 time = scene.CurrentTime;
 % Update sensor readings and read data.
 updateSensors(scene);
 egoPose = read(egoUAV);

 % Track with radar
 [radardets, radarTracks, inforadar] = updateRadarTracker(radar,radarPHD, egoPose, time);

 Lidar and Radar Fusion in an Urban Air Mobility Scenario

4-37

 % Track with lidar
 [lidardets, lidarTracks, nonGroundCloud, groundCloud] = updateLidarTracker(lidar,lidarDetector, lidarJPDA, egoPose);

 % Fuse lidar and radar tracks
 rectRadarTracks = formatPHDTracks(radarTracks);
 if isLocked(fuser) || ~isempty(radarTracks) || ~isempty(lidarTracks)
 [fusedTracks,~,allfused,info] = fuser([lidarTracks;rectRadarTracks],time);
 else
 fusedTracks = objectTrack.empty;
 end

 % Save log
 logCount = logCount + 1;
 lidarlog{logCount} = lidarTracks;
 radarlog{logCount} = rectRadarTracks;
 fusedlog{logCount} = fusedTracks;
 truthlog{logCount} = logTargetTruth(scene.Platforms(1:3));

 % Update figure
 viewer(radarcov, nonGroundCloud, groundCloud, lidardets, radardets, lidarTracks, radarTracks, fusedTracks);
end

Based on the visualization results, you perform an initial qualitative assessment of the tracking
performance. The display at the end of the scenario shows that all three UAVs were well tracked by
the ego. With the current sensor suite configuration, lidar tracks were only established partially due

4 Simulink Block Examples

4-38

to the limited coverage of the lidar sensor. The wider field of view of the radar allowed establishing
radar tracks more consistently in this scenario.

The three animated GIFs above show parts of the chase views. You can see that the quality of lidar
tracks (orange box) is affected by the geometry of the scenario. UAV A (left) is illuminated by the lidar
(shown in yellow) almost directly from above. This enables the tracker to capture the full extent of the
drone over time. However, UAV C (right) is partially seen by the radar which leads to underestimating
the size of the drone. Also, the estimated centroid periodically oscillates around the true drone
center. The larger fixed-wing UAV (middle) generates many lidar points. Thus, the tracker can detect
and track the full extent of the target once it has completely entered the field of view of the lidar. In
all three cases, the radar, shown in blue, provides more accurate information of the target extent. As
a result, the fused track box (in purple) is more closely capturing the extent of each UAV. However,
the radar returns are less accurate in position. Radar tracks show more position bias and poorer
orientation estimate.

Tracking metrics

In this section you analyze the performance of the tracking system using the GOSPA tracking metric.
You first define the distance function which quantifies the error between track and truth using a
scalar value. A lower GOSPA value means an overall better performance.

gospaR = trackGOSPAMetric('Distance','custom','DistanceFcn',@metricDistance);
gospaL = clone(gospaR);
gospaF = clone(gospaR);

gospaRadar = zeros(1,numSteps);
gospaLidar = zeros(1,numSteps);
gospaFused = zeros(1,numSteps);

for i=1:numSteps
 truth = truthlog{i};
 gospaRadar(i) = gospaR(radarlog{i},truth);
 gospaLidar(i) = gospaL(lidarlog{i},truth);
 gospaFused(i) = gospaF(fusedlog{i},truth);
end

figure
plot(gospaRadar,'Color',viewer.RadarColor,'LineWidth',2);
hold on

 Lidar and Radar Fusion in an Urban Air Mobility Scenario

4-39

grid on
plot(gospaLidar,'Color',viewer.LidarColor,'LineWidth',2);
plot(gospaFused,'Color',viewer.FusedColor,'LineWidth',2);
legend('Radar','Lidar','Lidar + Radar');
xlabel('Steps')
ylabel('GOSPA')

You analyze the overall system performance. Each tracker is penalized for not tracking any of the
UAVs even if the target UAV is outside of the sensor coverage. This shows improved performance
when fusing lidar and radar due to the added surveillance area. This is particularly noticeable at the
end of the simulation where two targets are tracked, one by radar and the other by lidar, but both are
tracked by the fuser. Additionally, you can see that the fused GOSPA is below the minimum of lidar
and radar GOSPA, showing the fused track has better quality than each individual track.

% clean up
removeCustomTerrain("southboulder");
rng(s);

Summary

In this example, you have learned how to model a UAV-borne lidar and radar tracking system and
tested it on an urban air mobility scenario. You used the uavScenario object to create a realistic
urban environment with terrain and buildings. You generated synthetic sensor data to test a complete
tracking system chain, involving point cloud processing, point target and extended target tracking,
and track fusion.

4 Simulink Block Examples

4-40

Supporting Functions

createScenario creates the uavScenario using the OpenStreetMap terrain and building mesh
data

function scene = createScenario(dtedfile,buildingfile)

try
 addCustomTerrain("southboulder",dtedfile);
catch
 % custom terrain was already added.
end
load(buildingfile,'buildings');

minHeight = 1.6925e+03;
latlonCenter = [39.9786 -105.2882 minHeight];
scene = uavScenario("UpdateRate",10,"StopTime",40,...
 "ReferenceLocation",latlonCenter);

% Add terrain mesh
sceneXLim = [1800 2000];
sceneYLim = [0 200];
scene.addMesh("terrain", {"southboulder", sceneXLim, sceneYLim},[0 0 0]);

% Add buildings
for idx = 1:numel(buildings)-1
 v = buildings{idx}.Vertices;
 v(:,3) = v(:,3) - minHeight;
 rangeVMin = min(v);
 rangeVMax = max(v);
 if rangeVMin(1) > sceneXLim(1) && rangeVMax(1) < sceneXLim(2) &&...
 rangeVMin(2) > sceneYLim(1) && rangeVMax(2) < sceneYLim(2)
 scene.addMesh("custom", {v, buildings{idx}.Faces},[0 0 0]);
 end
end

end

createRadarTracker creates the trackerPHD tracker to fuse radar detections.

function tracker = createRadarTracker(radar, egoUAV)

% Create sensor configuration for trackerPHD
fov = radar.FieldOfView;
sensorLimits = [-fov(1)/2 fov(1)/2; -fov(2)/2 fov(2)/2; 0 inf];
sensorResolution = [radar.AzimuthResolution;radar.ElevationResolution; radar.RangeResolution];
Kc = radar.FalseAlarmRate/(radar.AzimuthResolution*radar.RangeResolution*radar.ElevationResolution);
Pd = radar.DetectionProbability;

sensorPos = radar.MountingLocation(:);
sensorOrient = rotmat(quaternion(radar.MountingAngles, 'eulerd', 'ZYX', 'frame'),'frame');

% Specify frame info of radar with respect to UAV
sensorTransformParameters(1) = struct('Frame','Spherical',...
 'OriginPosition', sensorPos,...
 'OriginVelocity', zeros(3,1),...% Sensor does not move relative to ego
 'Orientation', sensorOrient,...
 'IsParentToChild',true,...% Frame rotation is supplied as orientation

 Lidar and Radar Fusion in an Urban Air Mobility Scenario

4-41

 'HasElevation',true,...
 'HasVelocity',false);

% Specify frame info of UAV with respect to scene
egoPose = read(egoUAV);
sensorTransformParameters(2) = struct('Frame','Rectangular',...
 'OriginPosition', egoPose(1:3),...
 'OriginVelocity', egoPose(4:6),...
 'Orientation', rotmat(quaternion(egoPose(10:13)),'Frame'),...
 'IsParentToChild',true,...
 'HasElevation',true,...
 'HasVelocity',false);

radarPHDconfig = trackingSensorConfiguration(radar.SensorIndex,...
 'IsValidTime', true,...
 'SensorLimits',sensorLimits,...
 'SensorResolution', sensorResolution,...
 'DetectionProbability',Pd,...
 'ClutterDensity', Kc,...
 'SensorTransformFcn',@cvmeas,...
 'SensorTransformParameters', sensorTransformParameters);

radarPHDconfig.FilterInitializationFcn = @initRadarFilter;

radarPHDconfig.MinDetectionProbability = 0.4;

% Threshold for partitioning
threshold = [3 16];
tracker = trackerPHD('TrackerIndex',1,...
 'HasSensorConfigurationsInput',true,...
 'SensorConfigurations',{radarPHDconfig},...
 'BirthRate',1e-3,...
 'AssignmentThreshold',50,...% Minimum negative log-likelihood of a detection cell to add birth components
 'ExtractionThreshold',0.80,...% Weight threshold of a filter component to be declared a track
 'ConfirmationThreshold',0.99,...% Weight threshold of a filter component to be declared a confirmed track
 'MergingThreshold',50,...% Threshold to merge components
 'DeletionThreshold',0.1,...% Threshold to delete components
 'LabelingThresholds',[1.01 0.01 0],...% This translates to no track-splitting. Read LabelingThresholds help
 'PartitioningFcn',@(dets) partitionDetections(dets, threshold(1),threshold(2),'Distance','euclidean'));
end

initRadarfilter implements the GGIW-PHD filter used by the trackerPHD object. This filter is
used during a tracker update to 1) initialize new birth components in the density and 2) initialize new
component from detection partitions.

function phd = initRadarFilter (detectionPartition)

if nargin == 0

 % Process noise
 sigP = 0.2;
 sigV = 1;
 Q = diag([sigP, sigV, sigP, sigV, sigP, sigV].^2);

 phd = ggiwphd(zeros(6,0),repmat(eye(6),[1 1 0]),...
 'ScaleMatrices',zeros(3,3,0),...
 'MaxNumComponents',1000,...
 'ProcessNoise',Q,...

4 Simulink Block Examples

4-42

 'HasAdditiveProcessNoise',true,...
 'MeasurementFcn', @cvmeas,...
 'MeasurementJacobianFcn', @cvmeasjac,...
 'PositionIndex', [1 3 5],...
 'ExtentRotationFcn', @(x,dT)eye(3,class(x)),...
 'HasAdditiveMeasurementNoise', true,...
 'StateTransitionFcn', @constvel,...
 'StateTransitionJacobianFcn', @constveljac);

else %nargin == 1
 % ------------------
 % 1) Configure Gaussian mixture
 % 2) Configure Inverse Wishart mixture
 % 3) Configure Gamma mixture
 % -----------------

 %% 1) Configure Gaussian mixture
 meanDetection = detectionPartition{1};
 n = numel(detectionPartition);

 % Collect all measurements and measurement noises.
 allDets = [detectionPartition{:}];
 zAll = horzcat(allDets.Measurement);
 RAll = cat(3,allDets.MeasurementNoise);

 % Specify mean noise and measurement
 z = mean(zAll,2);
 R = mean(RAll,3);
 meanDetection.Measurement = z;
 meanDetection.MeasurementNoise = R;

 % Parse mean detection for position and velocity covariance.
 [posMeas,velMeas,posCov] = matlabshared.tracking.internal.fusion.parseDetectionForInitFcn(meanDetection,'initRadarFilter','double');

 % Create a constant velocity state and covariance
 states = zeros(6,1);
 covariances = zeros(6,6);
 states(1:2:end) = posMeas;
 states(2:2:end) = velMeas;
 covariances(1:2:end,1:2:end) = posCov;
 covariances(2:2:end,2:2:end) = 10*eye(3);

 % process noise
 sigP = 0.2;
 sigV = 1;
 Q = diag([sigP, sigV, sigP, sigV, sigP, sigV].^2);

 %% 2) Configure Inverse Wishart mixture parameters
 % The extent is set to the spread of the measurements in positional-space.
 e = zAll - z;
 Z = e*e'/n + R;
 dof = 150;
 % Measurement Jacobian
 p = detectionPartition{1}.MeasurementParameters;
 H = cvmeasjac(states,p);

 Bk = H(:,1:2:end);
 Bk2 = eye(3)/Bk;

 Lidar and Radar Fusion in an Urban Air Mobility Scenario

4-43

 V = (dof-4)*Bk2*Z*Bk2';

 % Configure Gamma mixture parameters such that the standard deviation
 % of the number of detections is n/4
 alpha = 16; % shape
 beta = 16/n; % rate

 phd = ggiwphd(...
 ... Gaussian parameters
 states,covariances,...
 'HasAdditiveMeasurementNoise' ,true,...
 'ProcessNoise',Q,...
 'HasAdditiveProcessNoise',true,...
 'MeasurementFcn', @cvmeas,...
 'MeasurementJacobianFcn' , @cvmeasjac,...
 'StateTransitionFcn', @constvel,...
 'StateTransitionJacobianFcn' , @constveljac,...
 'PositionIndex' ,[1 3 5],...
 'ExtentRotationFcn' , @(x,dT) eye(3),...
 ... Inverse Wishart parameters
 'DegreesOfFreedom',dof,...
 'ScaleMatrices',V,...
 'TemporalDecay',150,...
 ... Gamma parameters
 'Shapes',alpha,'Rates',beta,...
 'GammaForgettingFactors',1.05);
end

end

formatPHDTracks formats the elliptical GGIW-PHD tracks into rectangular augmented state tracks
for track fusion. convertExtendedTrack returns state and state covariance of augmented
rectangular state. The Inverse Wishart random matrix eigen values are used to derive rectangular
box dimensions. The eigen vectors provide with the orientation quaternion. In this example, you use
an arbitrary covariance for radar track dimension and orientation, which is often sufficient for
tracking.

function tracksout = formatPHDTracks(tracksin)
% Convert track struct from ggiwphd to objectTrack with state definition
% [x y z vx vy vz L W H q0 q1 q2 q3]
N = numel(tracksin);
tracksout = repmat(objectTrack,N,1);
for i=1:N
 tracksout(i) = objectTrack(tracksin(i));
 [state, statecov] = convertExtendedTrack(tracksin(i));
 tracksout(i).State = state;
 tracksout(i).StateCovariance = statecov;
end
end

function [state, statecov] = convertExtendedTrack(track)
% Augment the state with the extent information

extent = track.Extent;
[V,D] = eig(extent);
% Choose L > W > H. Use 1.5 sigma as the dimension
[dims, idx] = sort(1.5*sqrt(diag(D)),'descend');

4 Simulink Block Examples

4-44

V = V(:,idx);
q = quaternion(V,'rotmat','frame');
q = q./norm(q);
[q1, q2, q3, q4] = parts(q);
state = [track.State; dims(:); q1 ; q2 ; q3 ; q4];
statecov = blkdiag(track.StateCovariance, 4*eye(3), 4*eye(4));

end

updateRadarTracker updates the radar tracking chain. The function first reads the current radar
returns. Then the radar returns are passed to the GGIW-PHD tracker after updating its sensor
configuration with the current pose of the ego drone.

function [radardets, radarTracks, inforadar] = updateRadarTracker(radar,radarPHD, egoPose, time)
[~,~,radardets, ~, ~] = read(radar); % isUpdated and time outputs are not compatible with this workflow
inforadar = [];
if mod(time,1) ~= 0
 radardets = {};
end
if mod(time,1) == 0 && (isLocked(radarPHD) || ~isempty(radardets))
 % Update radar sensor configuration for the tracker
 configs = radarPHD.SensorConfigurations;
 configs{1}.SensorTransformParameters(2).OriginPosition = egoPose(1:3);
 configs{1}.SensorTransformParameters(2).OriginVelocity = egoPose(4:6);
 configs{1}.SensorTransformParameters(2).Orientation = rotmat(quaternion(egoPose(10:13)),'frame');
 [radarTracks,~,~,inforadar] = radarPHD(radardets,configs,time);
elseif isLocked(radarPHD)
 radarTracks = predictTracksToTime(radarPHD,'confirmed', time);
 radarTracks = arrayfun(@(x) setfield(x,'UpdateTime',time), radarTracks);
else
 radarTracks = objectTrack.empty;
end
end

updateLidarTracker updates the lidar tracking chain. The function first reads the current point
cloud output from the lidar sensor. Then the point cloud is processed to extract object detections.
Finally, these detections are passed to the point target tracker.

function [lidardets, lidarTracks,nonGroundCloud, groundCloud] = updateLidarTracker(lidar, lidarDetector,lidarJPDA, egoPose)
[~, time, ptCloud] = read(lidar);
% lidar is always updated
[lidardets,nonGroundCloud, groundCloud] = lidarDetector(egoPose, ptCloud,time);
if isLocked(lidarJPDA) || ~isempty(lidardets)
 lidarTracks = lidarJPDA(lidardets,time);
else
 lidarTracks = objectTrack.empty;
end
end

initLidarFilter initializes filter for the lidar tracker. The initial track state is derived from the
detection position measurement. Velocity is set to 0 with a large covariance to allow future detections
to be associated to the track. Augmented state motion model, measurement functions, and jacobians
are also defined below.

function ekf = initLidarFilter(detection)

% Lidar measurement: [x y z L W H q0 q1 q2 q3]
meas = detection.Measurement;

 Lidar and Radar Fusion in an Urban Air Mobility Scenario

4-45

initState = [meas(1);0;meas(2);0;meas(3);0; meas(4:6);meas(7:10)];
initStateCovariance = blkdiag(100*eye(6), 100*eye(3), eye(4));

% Process noise standard deviations
sigP = 1;
sigV = 2;
sigD = 0.5; % Dimensions are constant but partially observed
sigQ = 0.5;

Q = diag([sigP, sigV, sigP, sigV, sigP, sigV, sigD, sigD, sigD, sigQ, sigQ, sigQ, sigQ].^2);

ekf = trackingEKF('State',initState,...
 'StateCovariance',initStateCovariance,...
 'ProcessNoise',Q,...
 'StateTransitionFcn',@augmentedConstvel,...
 'StateTransitionJacobianFcn',@augmentedConstvelJac,...
 'MeasurementFcn',@augmentedCVmeas,...
 'MeasurementJacobianFcn',@augmentedCVmeasJac);
end

function stateOut = augmentedConstvel(state, dt)
% Augmented state for constant velocity
stateOut = constvel(state(1:6,:),dt);
stateOut = vertcat(stateOut,state(7:end,:));
% Normalize quaternion in the prediction stage
idx = 10:13;
qparts = stateOut(idx);
n = sqrt(sum(qparts.^2));
qparts = qparts./n;
if qparts(1) < 0
 stateOut(idx) = -qparts;
else
 stateOut(idx) = qparts;
end
end

function jacobian = augmentedConstvelJac(state,varargin)
jacobian = constveljac(state(1:6,:),varargin{:});
jacobian = blkdiag(jacobian, eye(7));
end

function measurements = augmentedCVmeas(state)
measurements = cvmeas(state(1:6,:));
measurements = [measurements; state(7:9,:); state(10:13,:)];
end

function jacobian = augmentedCVmeasJac(state,varargin)
jacobian = cvmeasjac(state(1:6,:),varargin{:});
jacobian = blkdiag(jacobian, eye(7));
end

logTargetTruth logs true pose and dimensions throughout the simulation for performance
analysis.

function logEntry = logTargetTruth(targets)
n = numel(targets);
targetPoses = repmat(struct('Position',[],'Velocity',[],'Dimension',[],'Orientation',[]),1,n);
uavDimensions = [5 5 0.3 ; 9.8 8.8 2.8; 5 5 0.3];

4 Simulink Block Examples

4-46

for i=1:n
 pose = read(targets(i));
 targetPoses(i).Position = pose(1:3);
 targetPoses(i).Velocity = pose(4:6);
 targetPoses(i).Dimension = uavDimensions(i,:);
 targetPoses(i).Orientation = pose(10:13);
end
logEntry = targetPoses;
end

metricDistance defines a custom distance for GOSPA. This distance incorporates errors in
position, velocity, dimension, and orientation of the tracks.

function out = metricDistance(track,truth)
positionIdx = [1 3 5];
velIdx = [2 4 6];
dimIdx = 7:9;
qIdx = 10:13;

trackpos = track.State(positionIdx);
trackvel = track.State(velIdx);
trackdim = track.State(dimIdx);
trackq = quaternion(track.State(qIdx)');

truepos = truth.Position;
truevel = truth.Velocity;
truedim = truth.Dimension;
trueq = quaternion(truth.Orientation);

errpos = truepos(:) - trackpos(:);
errvel = truevel(:) - trackvel(:);
errdim = truedim(:) - trackdim(:);

% Weights expressed as inverse of the desired accuracy
posw = 1/0.2; %m^-1
velw = 1/2; % (m/s) ^-1
dimw = 1/4; % m^-1
orw = 1/20; % deg^-1

distPos = sqrt(errpos'*errpos);
distVel = sqrt(errvel'*errvel);
distdim = sqrt(errdim'*errdim);
distq = rad2deg(dist(trackq, trueq));

out = (distPos * posw + distVel * velw + distdim * dimw + distq * orw)/(posw + velw + dimw + orw);
end

References

1 Velodyne Lidar puck: https://velodynelidar.com/products/puck/
2 Echodyne UAV radar: https://www.echodyne.com/defense/uav-radar/

 Lidar and Radar Fusion in an Urban Air Mobility Scenario

4-47

https://velodynelidar.com/products/puck/
https://www.echodyne.com/defense/uav-radar/

Avoid Moving Obstacles Based on Radar Detections
This example demonstrates how to avoid collision with moving obstacles based on the velocity
obstacle concept [1].The uavScenario used in this example is based on the "“Simulate Radar Sensor
Mounted On UAV” on page 1-95" example, which shows how to generate track detections of moving
UAVs close to the ego vehicle.

Setup testing scenario

The testing scenario has two UAVs, of which one ego UAV carries a radar sensor and the other UAV
acts as a moving obstacle. The radar sensor on the ego vehicle generates target tracks containing
target position and velocity information based on detections. The ego UAV can execute avoidance
maneuver based on detection information.

rng(0) % For repeatable results.

% Create a scenario that runs for 10 seconds.
s = uavScenario("StopTime",30,"HistoryBufferSize",200);

% Create a fixed-wing target that moves from [30 0 0] to [20 10 0].
target = uavPlatform("Target",s,"Trajectory",waypointTrajectory([30 0 0; 0 30 0],"TimeOfArrival",[0 30]));
updateMesh(target,"fixedwing",{1},[1 0 0],eul2tform([0 0 pi]));

% Create a quadrotor as the ego vehicle.
egoVelocity = [1 1 0];
egoMultirotor = uavPlatform("EgoVehicle",s,"InitialVelocity", egoVelocity);
updateMesh(egoMultirotor,"quadrotor",{1},[0 1 0],eul2tform([0 0 pi]));

% Create a radar sensor and set up its properties.
radarSensor = radarDataGenerator("no scanning","SensorIndex",1,"UpdateRate",10,...
 "FieldOfView",[120 80],...
 "HasElevation", true,...
 "ElevationResolution", 3,...
 "AzimuthResolution", 1, ...
 "RangeResolution", 10, ... meters
 "RangeRateResolution",3,...
 "RangeLimits", [0 750],...
 "TargetReportFormat","Tracks",...
 "TrackCoordinates",'Scenario',...
 "HasINS", true,...
 "HasFalseAlarms",true,...
 "FalseAlarmRate",1e-5,...
 "HasRangeRate",true,...
 "FalseAlarmRate", 1e-7);

% Mount the radar sensor on the ego vehicle. ExampleHelperUAVRadar inherits
% from the uav.SensorAdaptor class.
radar = uavSensor("Radar",egoMultirotor,ExampleHelperUAVRadar(radarSensor),"MountingAngles", [0 0 0]);

Simulate the scenario without obstacle avoidance

In the scenario, if you let the ego UAV keep flying along its initial direction, it will eventually collide
with the fixed wing UAV as shown in the simulation.

% Set up the 3D view of the scenario.
[ax, plotFrames] = show3D(s);
% Represent the ego UAV as a green marker.

4 Simulink Block Examples

4-48

plot3(0,0,0,"Marker","diamond","MarkerFaceColor","green","Parent",plotFrames.EgoVehicle.BodyFrame);
% Represent the other UAV as a red marker.
plot3(0,0,0,"Marker","diamond","MarkerFaceColor","red","Parent",plotFrames.Target.BodyFrame);
xlim([-5,35]);
ylim([-5,35]);

% Start simulation.
setup(s);
while advance(s)
 % Move ego UAV along its velocity vector.
 motion = read(egoMultirotor);
 motion(1:2) = motion(1:2) + motion(4:5)/s.UpdateRate;
 move(egoMultirotor, motion);

 show3D(s,"FastUpdate", true,"Parent",ax);
 pause(0.02);
end

Configure obstacle avoidance behavior

To avoid such collisions, you need to detect the potential collision using radar sensor readings and
generate avoidance maneuver using a velocity obstacle approach. First you setup the avoidance
parameter that controls the safety radius of the avoidance algorithm and the time horizon at which
the avoidance algorithm will start working.

% Set up safety radius
radiusUAV = 0.5; % UAV radius (m)

 Avoid Moving Obstacles Based on Radar Detections

4-49

radiusObs = 2; % Obstacle radius (m)
safetyDist = 2; % Collision safety radius (m) - same for all obstacles
effectiveRadius = radiusUAV+radiusObs+safetyDist;

% Time Horizon (time until collision to perform avoidance maneuver)
Th = 10; % sec

Simulate scenario and test obstacle avoidance behavior

In this section, you simulate the UAV scenario to test the obstacle avoidance algorithm. The
avoidance algorithm controls the motion of the ego multirotor according to the desired velocity
output for collision avoidance. The avoidance algorithm tries to find a collision free direction based on
the velocities of both the ego vehicle and the target vehicle, and then direct the ego vehicle towards
the collision free direction while maintaining the same velocity magnitude.

% Set up the 3D view of the scenario.
[ax,plotFrames] = show3D(s);
% Represent the ego UAV as a green marker.
plot3(0,0,0,"Marker","diamond","MarkerFaceColor","green","Parent",plotFrames.EgoVehicle.BodyFrame);
% Represent the other UAV as a red marker.
plot3(0,0,0,"Marker","diamond","MarkerFaceColor","red","Parent",plotFrames.Target.BodyFrame);
xlim([-5,35]);
ylim([-5,35]);

% Start simulation.
restart(s);
setup(s);
desVel = egoVelocity(1:2);
while advance(s)

 % Move the ego UAV along its velocity vector.
 motion = read(egoMultirotor);
 motion(1:2) = motion(1:2) + desVel/s.UpdateRate;
 motion(4:5) = desVel;
 move(egoMultirotor, motion);

 % Update sensor readings and read data.
 updateSensors(s);

 % Obtain detections from the radar.
 [isUpdated,time,confTracks,numTracks,config] = read(radar);

 % Perform obstacle avoidance maneuver by adjusting ego vehicle's
 % velocity
 desVel = egoVelocity(1:2);
 if numTracks > 0
 % Detect imminent collision using
 % exampleHelperDetectImminentCollision function.
 obstacleStates = [confTracks.State];
 [isOnCollisionPath, VOFrontAngle, VOBackAngle, VOMinAngle, VOMaxAngle] ...
 = exampleHelperDetectImminentCollision(motion(1:2)', motion(4:5)', obstacleStates([1,3],:), ...
 obstacleStates([2,4],:),effectiveRadius,Th);

 % Find obstacles that are on imminent collision path.
 collisionObsIdx = find(isOnCollisionPath);
 if any(isOnCollisionPath)
 % Compute the velocity required to avoid collision using the
 % exampleHelperCVHeuristic2D function.

4 Simulink Block Examples

4-50

 desVel = exampleHelperCVHeuristic2D(norm(egoVelocity), ...
 motion(1:2)', ...
 motion(4:5)', ...
 obstacleStates([1,3],collisionObsIdx), ...
 obstacleStates([2,4],collisionObsIdx), ...
 effectiveRadius, ...
 VOFrontAngle(collisionObsIdx), ...
 VOBackAngle(collisionObsIdx), ...
 VOMinAngle(collisionObsIdx), ...
 VOMaxAngle(collisionObsIdx), Th);
 desVel = desVel';
 end
 end

 show3D(s,"FastUpdate", true,"Parent",ax);
 pause(0.02);
end

Reference

[1] Fiorini P, Shiller Z. Motion Planning in Dynamic Environments Using Velocity Obstacles. The
International Journal of Robotics Research. 1998;17(7):760-772. doi:10.1177/027836499801700706

 Avoid Moving Obstacles Based on Radar Detections

4-51

	UAV Toolbox Examples
	Visualize and Playback MAVLink Flight Log
	Flight Instrument Gauge Visualization for a Drone
	Visualize Custom Flight Log
	Analyze UAV Autopilot Flight Log Using Flight Log Analyzer
	Tuning Waypoint Follower for Fixed-Wing UAV
	Approximate High-Fidelity UAV model with UAV Guidance Model block
	Motion Planning with RRT for Fixed-Wing UAV
	Transition from Low to High-Fidelity UAV Models in Three Stages
	UAV Package Delivery
	Automate Testing for UAV Package Delivery Example
	UAV Scenario Tutorial
	Simulate IMU Sensor Mounted on UAV
	Simulate Radar Sensor Mounted On UAV
	Map Environment For Motion Planning Using UAV Lidar
	Plan Minimum Snap Trajectory for Quadrotor
	Tune UAV Parameters Using MAVLink Parameter Protocol
	Exchange Data for MAVLink Microservices like Mission Protocol and Parameter Protocol Using Simulink
	Onboard Computer Path Planning Interface for PX4 SITL Deployable on NVIDIA Jetson

	3D Simulation – User's Guide
	Unreal Engine Simulation for Unmanned Aerial Vehicles
	Unreal Engine Simulation Blocks
	Algorithm Testing and Visualization

	Unreal Engine Simulation Environment Requirements and Limitations
	Software Requirements
	Minimum Hardware Requirements
	Limitations

	How Unreal Engine Simulation for UAVs Works
	Communication with 3D Simulation Environment
	Block Execution Order

	Coordinate Systems for Unreal Engine Simulation in UAV Toolbox
	Earth-Fixed (Inertial) Coordinate System
	Body (Non-Inertial) Coordinate System
	Unreal Engine World Coordinate System

	Choose a Sensor for Unreal Engine Simulation
	Simulate Simple Flight Scenario and Sensor in Unreal Engine Environment
	Depth and Semantic Segmentation Visualization Using Unreal Engine Simulation
	Stream Camera, Depth and Semantic Segmentation Data from Unreal Engine to NVIDIA Jetson
	Customize Unreal Engine Scenes for UAVs
	Install Support Package for Customizing Scenes
	Verify Software and Hardware Requirements
	Install Support Package
	Set Up Scene Customization Using Support Package

	Migrate Projects Developed Using Prior Support Packages
	Customize Unreal Engine Scenes Using Simulink and Unreal Editor
	Open Unreal Editor from Simulink
	Reparent Actor Blueprint
	Create or Modify Scenes in Unreal Editor
	Run Simulation

	Package Custom Scenes into Executable
	Package Scene into Executable Using Unreal Engine

	Apply Semantic Segmentation Labels to Custom Scenes
	Stereo Visual SLAM for UAV Navigation in 3D Simulation
	Prepare Custom UAV Vehicle Mesh for the Unreal Editor
	Set Up Bone Hierarchy
	Assign Materials
	Export Mesh and Armature
	Import Mesh to Unreal Editor
	Set Block Parameters

	3D Data Processing – User's Guide
	Choose a 3-D Coordinate System
	Geodetic Coordinates
	East-North-Up Coordinates
	North-East-Down Coordinates
	Tips

	Simulink Block Examples
	Generate Course and Yaw Commands for Orbit Following in Simulink®
	UAV Obstacle Avoidance in Simulink
	Add GPS Sensor Noise to Multirotor Guidance Model
	Simulate GPS Sensor Noise
	Simulate UAV Scenario Using Scenario Blocks
	Simulate INS Block
	Lidar and Radar Fusion in an Urban Air Mobility Scenario
	Avoid Moving Obstacles Based on Radar Detections

